Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation
- URL: http://arxiv.org/abs/2504.08195v1
- Date: Fri, 11 Apr 2025 01:46:18 GMT
- Title: Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation
- Authors: Michael Elrod, Niloufar Mehrabi, Rahul Amin, Manveen Kaur, Long Cheng, Jim Martin, Abolfazl Razi,
- Abstract summary: We propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution.<n>Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication.
- Score: 2.8169258551959544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mission planning for a fleet of cooperative autonomous drones in applications that involve serving distributed target points, such as disaster response, environmental monitoring, and surveillance, is challenging, especially under partial observability, limited communication range, and uncertain environments. Traditional path-planning algorithms struggle in these scenarios, particularly when prior information is not available. To address these challenges, we propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution. Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication. A transformer-based message-passing mechanism, augmented with edge-feature-enhanced attention, captures complex interaction patterns, while a Double Deep Q-Network (Double DQN) with prioritized experience replay optimizes agent policies in partially observable environments. This integration is carefully designed to address specific requirements of multi-agent navigation, such as scalability, adaptability, and efficient task execution. Experimental results demonstrate superior performance, with 90% service provisioning and 100% grid coverage (node discovery), while reducing the average steps per episode to 200, compared to 600 for benchmark methods such as particle swarm optimization (PSO), greedy algorithms and DQN.
Related papers
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.<n>Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.<n>We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning [2.5022287664959446]
We introduce a novel framework that integrates graph neural networks (GNNs) with a centralized training and decentralized execution (CTDE) paradigm.<n>Our approach enables unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) to dynamically allocate tasks efficiently without necessitating central coordination.
arXiv Detail & Related papers (2025-02-04T13:29:56Z) - DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM)<n>In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG)<n> Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.
arXiv Detail & Related papers (2024-11-13T02:41:02Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design [3.5527561584422465]
We present AlterNAting COordination and Network-Design Algorithm (Anaconda)
Anaconda is a scalable algorithm that also enjoys near-optimality guarantees.
We demonstrate in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
arXiv Detail & Related papers (2024-09-02T18:11:33Z) - MASP: Scalable GNN-based Planning for Multi-Agent Navigation [18.70078556851899]
Multi-Agent Scalable Graph-based Planner (MASP) is a goal-conditioned hierarchical planner for navigation tasks.
MASP employs a hierarchical framework to reduce space complexity by decomposing a large exploration space into multiple goal-conditioned subspaces.
For agent cooperation and the adaptation to varying team sizes, we model agents and goals as graphs to better capture their relationship.
arXiv Detail & Related papers (2023-12-05T06:05:04Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
We propose a novel network structure called hierarchical graph recurrent network(HGRN) for multi-agent cooperation under partial observability.
Based on the above technologies, we proposed a value-based MADRL algorithm called Soft-HGRN and its actor-critic variant named SAC-HRGN.
arXiv Detail & Related papers (2021-09-05T09:51:25Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.