Domain Decomposition-based coupling of Operator Inference reduced order models via the Schwarz alternating method
- URL: http://arxiv.org/abs/2409.01433v3
- Date: Sat, 12 Oct 2024 02:04:23 GMT
- Title: Domain Decomposition-based coupling of Operator Inference reduced order models via the Schwarz alternating method
- Authors: Ian Moore, Christopher Wentland, Anthony Gruber, Irina Tezaur,
- Abstract summary: We present an approach for coupling together subdomain-local reduced order models (ROMs) with each other and with subdomain-local full order models (FOMs)
We demonstrate that the method is capable of coupling together arbitrary combinations of OpInf ROMs and FOMs, and that speed-ups over a monolithic FOM are possible when performing OpInf ROM coupling.
- Score: 0.4473915603131591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents and evaluates an approach for coupling together subdomain-local reduced order models (ROMs) constructed via non-intrusive operator inference (OpInf) with each other and with subdomain-local full order models (FOMs), following a domain decomposition of the spatial geometry on which a given partial differential equation (PDE) is posed. Joining subdomain-local models is accomplished using the overlapping Schwarz alternating method, a minimally-intrusive multiscale coupling technique that works by transforming a monolithic problem into a sequence of subdomain-local problems, which communicate through transmission boundary conditions imposed on the subdomain interfaces. After formulating the overlapping Schwarz alternating method for OpInf ROMs, termed OpInf-Schwarz, we evaluate the method's accuracy and efficiency on several test cases involving the heat equation in two spatial dimensions. We demonstrate that the method is capable of coupling together arbitrary combinations of OpInf ROMs and FOMs, and that speed-ups over a monolithic FOM are possible when performing OpInf ROM coupling.
Related papers
- The role of interface boundary conditions and sampling strategies for Schwarz-based coupling of projection-based reduced order models [0.0]
We present a framework for the coupling of subdomain-local projection-based reduced order models (PROMs) using the Schwarz alternating method.
We show that it is possible to obtain a stable and accurate coupled model utilizing Dirichlet-Dirichlet (rather than Robin-Robin or alternating Dirichlet-Neumann) transmission BCs on the subdomain boundaries.
Our numerical results suggest that the proposed methodology has the potential to improve PROM accuracy.
arXiv Detail & Related papers (2024-10-07T00:44:22Z) - Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
We present a non-overlapping, Schwarz-type domain decomposition method with a generalized interface condition.
Our approach employs physics and equality-constrained artificial neural networks (PECANN) within each subdomain.
A distinct advantage our domain decomposition method is its ability to learn solutions to both Poisson's and Helmholtz equations.
arXiv Detail & Related papers (2024-09-20T16:48:55Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Adversarial Schrödinger Bridge Matching [66.39774923893103]
Iterative Markovian Fitting (IMF) procedure alternates between Markovian and reciprocal projections of continuous-time processes.
We propose a novel Discrete-time IMF (D-IMF) procedure in which learning of processes is replaced by learning just a few transition probabilities in discrete time.
We show that our D-IMF procedure can provide the same quality of unpaired domain translation as the IMF, using only several generation steps instead of hundreds.
arXiv Detail & Related papers (2024-05-23T11:29:33Z) - A Generalized Schwarz-type Non-overlapping Domain Decomposition Method
using Physics-constrained Neural Networks [0.9137554315375919]
We present a meshless Schwarz-type non-overlapping domain decomposition based on artificial neural networks.
Our method is applicable to both the Laplace's and Helmholtz equations.
arXiv Detail & Related papers (2023-07-23T21:18:04Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - A domain-decomposed VAE method for Bayesian inverse problems [0.0]
This paper proposes a domain-decomposed variational auto-encoder Markov chain Monte Carlo (DD-VAE-MCMC) method to tackle these challenges simultaneously.
The proposed method first constructs local deterministic generative models based on local historical data, which provide efficient local prior representations.
arXiv Detail & Related papers (2023-01-09T07:35:43Z) - Diffusion models as plug-and-play priors [98.16404662526101]
We consider the problem of inferring high-dimensional data $mathbfx$ in a model that consists of a prior $p(mathbfx)$ and an auxiliary constraint $c(mathbfx,mathbfy)$.
The structure of diffusion models allows us to perform approximate inference by iterating differentiation through the fixed denoising network enriched with different amounts of noise.
arXiv Detail & Related papers (2022-06-17T21:11:36Z) - A Novel Partitioned Approach for Reduced Order Model -- Finite Element
Model (ROM-FEM) and ROM-ROM Coupling [0.0]
We consider a scenario in which one or more of the "codes" being coupled are projection-based reduced order models (ROMs)
We formulate a partitioned scheme for this problem that allows the coupling between a ROM "code" for one of the subdomain with a finite element model (FEM) or ROM "code" for the other subdomain.
We show numerical results that demonstrate the proposed method's efficacy in achieving both ROM-FEM and ROM-ROM coupling.
arXiv Detail & Related papers (2022-06-09T19:18:45Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
We study the problem of generating adversarial examples in a black-box setting, where we only have access to a zeroth order oracle.
We use this setting to find fast one-step adversarial attacks, akin to a black-box version of the Fast Gradient Sign Method(FGSM)
We show that the method uses fewer queries and achieves higher attack success rates than the current state of the art.
arXiv Detail & Related papers (2020-10-08T18:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.