論文の概要: Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets
- arxiv url: http://arxiv.org/abs/2409.01445v1
- Date: Mon, 2 Sep 2024 20:00:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 03:48:38.585029
- Title: Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets
- Title(参考訳): 海からのシンク:大規模データセットからビデオを取り出す
- Authors: Ishan Rajendrakumar Dave, Fabian Caba Heilbron, Mubarak Shah, Simon Jenni,
- Abstract要約: AVR(Alignable Video Retrieval)の課題について紹介する。
クェリビデオが与えられた場合、我々は大量のクリップから良質な映像を識別し、時間的にクェリに同期させることができる。
大規模なKineetics700を含む3つのデータセットに関する実験は、我々のアプローチの有効性を実証している。
- 参考スコア(独自算出の注目度): 62.280729345770936
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Temporal video alignment aims to synchronize the key events like object interactions or action phase transitions in two videos. Such methods could benefit various video editing, processing, and understanding tasks. However, existing approaches operate under the restrictive assumption that a suitable video pair for alignment is given, significantly limiting their broader applicability. To address this, we re-pose temporal alignment as a search problem and introduce the task of Alignable Video Retrieval (AVR). Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query. To achieve this, we make three key contributions: 1) we introduce DRAQ, a video alignability indicator to identify and re-rank the best alignable video from a set of candidates; 2) we propose an effective and generalizable frame-level video feature design to improve the alignment performance of several off-the-shelf feature representations, and 3) we propose a novel benchmark and evaluation protocol for AVR using cycle-consistency metrics. Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach in identifying alignable video pairs from diverse datasets. Project Page: https://daveishan.github.io/avr-webpage/.
- Abstract(参考訳): テンポラルビデオアライメントは、オブジェクトのインタラクションやアクションフェーズの遷移といった重要なイベントを2つのビデオで同期することを目的としている。
このような方法は様々なビデオ編集、処理、理解の作業に役立てることができる。
しかし、既存のアプローチは、アライメントに適したビデオペアが与えられるという制限的な仮定の下で動作し、より広範な適用性を著しく制限する。
そこで我々は,時間的アライメントを検索問題として再検討し,AVR(Alignable Video Retrieval)の課題を紹介した。
クェリビデオが与えられた場合、我々は大量のクリップから良質な映像を識別し、時間的にクェリに同期させることができる。
これを達成するために、私たちは3つの重要な貢献をします。
1) ビデオ整合性指標であるDRAQを導入し, 最適な整合性ビデオを特定し, 再ランク付けする。
2)複数のオフザシェルフ特徴表現のアライメント性能を改善するために,有効で一般化可能なフレームレベルの映像特徴設計を提案する。
3) サイクル一貫性メトリクスを用いたAVRのための新しいベンチマークと評価プロトコルを提案する。
大規模なKineetics700を含む3つのデータセットに関する実験は、多様なデータセットから調整可能なビデオペアを識別する手法の有効性を実証する。
Project Page: https://daveishan.github.io/avr-webpage/.com
関連論文リスト
- VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
空間的詳細と時間的コヒーレンスを保持するビデオQAペアを特徴とする,新しいデータセットであるVideoEspressoを紹介する。
GPT-4o を用いた QA ペア生成にあたり, 冗長性を抑えるためにセマンティック・アウェア法を用いて構成パイプラインを構築した。
フレームセレクタと2段階の命令微調整推論LVLMを備えたハイブリッドLVLM協調フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-22T08:33:36Z) - Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
ビデオ異常検出(VAD)はその潜在的な応用により注目されている。
Video Anomaly Retrieval (VAR)は、関連のある動画をモダリティによって実用的に検索することを目的としている。
一般的な異常データセットの上に構築されたUCFCrime-ARとXD-Violenceの2つのベンチマークを示す。
論文 参考訳(メタデータ) (2023-07-24T06:22:37Z) - Video alignment using unsupervised learning of local and global features [0.0]
フレームのグローバルな特徴と局所的な特徴を利用した非教師なしアライメント手法を提案する。
特に、人物検出、ポーズ推定、VGGネットワークという3つのマシンビジョンツールを用いて、各ビデオフレームに効果的な機能を導入する。
このアプローチの主な利点は、トレーニングを必要とせず、トレーニングサンプルを収集することなく、新しいタイプのアクションに適用できることです。
論文 参考訳(メタデータ) (2023-04-13T22:20:54Z) - CONQUER: Contextual Query-aware Ranking for Video Corpus Moment
Retrieval [24.649068267308913]
ビデオ検索アプリケーションは、ユーザーが大きなビデオコーパスから正確な瞬間を検索できるようにする。
本稿では,効率的なモーメントローカライゼーションとランキングのための新しいモデルを提案する。
クローズドワールドTVエピソードのTVRと、オープンワールドのユーザ生成ビデオのDiDeMoの2つのデータセットについて研究する。
論文 参考訳(メタデータ) (2021-09-21T08:07:27Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。
DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。
MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
論文 参考訳(メタデータ) (2021-05-13T17:33:26Z) - Video Corpus Moment Retrieval with Contrastive Learning [56.249924768243375]
ビデオコーパスモーメント検索(VCMR)は、与えられたテキストクエリに意味的に対応する時間モーメントを取得することです。
VCMRのためのコントラシブラーニング(ReLoCLNet)を用いた検索・ローカリゼーションネットワークを提案する。
実験の結果、ReLoCLNetは効率のためにテキストとビデオを個別にエンコードし、その検索精度はクロスモーダル相互作用学習を採用するベースラインと匹敵する。
論文 参考訳(メタデータ) (2021-05-13T12:54:39Z) - Learning by Aligning Videos in Time [10.075645944474287]
本稿では,時間的映像アライメントを前提課題として,映像表現を学習するための自己教師型アプローチを提案する。
我々は、エンコーダネットワークをトレーニングするための監視信号として使用できる、時間的アライメント損失と時間的正規化項の新たな組み合わせを利用する。
論文 参考訳(メタデータ) (2021-03-31T17:55:52Z) - Semi-Supervised Action Recognition with Temporal Contrastive Learning [50.08957096801457]
2つの異なる速度でラベル付きビデオを用いて2経路の時間的コントラストモデルを学習する。
我々は最先端の半教師付き画像認識手法の映像拡張性能を著しく向上させた。
論文 参考訳(メタデータ) (2021-02-04T17:28:35Z) - Deep Multimodal Feature Encoding for Video Ordering [34.27175264084648]
これらすべてのモダリティを符号化するコンパクトなマルチモーダル特徴表現を学習する方法を提案する。
我々のモデルパラメータは、時系列内の順序のない一連のビデオの時間的順序を推測するプロキシタスクによって学習される。
課題3つの課題,すなわち,ビデオの時間的順序を推定すること,および(ii)行動認識について,個人と共同のモダリティを分析し,評価する。
論文 参考訳(メタデータ) (2020-04-05T14:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。