論文の概要: Landscape-Aware Automated Algorithm Configuration using Multi-output Mixed Regression and Classification
- arxiv url: http://arxiv.org/abs/2409.01446v1
- Date: Mon, 2 Sep 2024 20:04:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 03:48:38.580265
- Title: Landscape-Aware Automated Algorithm Configuration using Multi-output Mixed Regression and Classification
- Title(参考訳): 多出力混合回帰と分類を用いたランドスケープ対応自動アルゴリズム構成
- Authors: Fu Xing Long, Moritz Frenzel, Peter Krause, Markus Gitterle, Thomas Bäck, Niki van Stein,
- Abstract要約: モデル学習におけるランダム生成関数(RGF)の可能性について検討する。
自動アルゴリズム構成(AAC)に焦点を当てる。
混合回帰および分類タスクの処理における高密度ニューラルネットワーク(NN)モデルの性能解析を行う。
- 参考スコア(独自算出の注目度): 0.01649298969786889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In landscape-aware algorithm selection problem, the effectiveness of feature-based predictive models strongly depends on the representativeness of training data for practical applications. In this work, we investigate the potential of randomly generated functions (RGF) for the model training, which cover a much more diverse set of optimization problem classes compared to the widely-used black-box optimization benchmarking (BBOB) suite. Correspondingly, we focus on automated algorithm configuration (AAC), that is, selecting the best suited algorithm and fine-tuning its hyperparameters based on the landscape features of problem instances. Precisely, we analyze the performance of dense neural network (NN) models in handling the multi-output mixed regression and classification tasks using different training data sets, such as RGF and many-affine BBOB (MA-BBOB) functions. Based on our results on the BBOB functions in 5d and 20d, near optimal configurations can be identified using the proposed approach, which can most of the time outperform the off-the-shelf default configuration considered by practitioners with limited knowledge about AAC. Furthermore, the predicted configurations are competitive against the single best solver in many cases. Overall, configurations with better performance can be best identified by using NN models trained on a combination of RGF and MA-BBOB functions.
- Abstract(参考訳): ランドスケープ・アウェア・アルゴリズム選択問題において,特徴に基づく予測モデルの有効性は,実践的応用のためのトレーニングデータの表現性に強く依存する。
本研究では,モデル学習におけるランダム生成関数 (RGF) の可能性について検討する。これは,広く使用されているブラックボックス最適化ベンチマーク (BBOB) スイートと比較して,より多様な最適化問題クラスをカバーする。
問題インスタンスのランドスケープ特性に基づいて最適なアルゴリズムを選択し、そのハイパーパラメータを微調整する自動アルゴリズム構成(AAC)に焦点を当てる。
RGFやマルチアフィンBBOB(MA-BBOB)関数などの異なるトレーニングデータセットを用いて,多出力混合回帰および分類タスクの処理における高密度ニューラルネットワーク(NN)モデルの性能を解析した。
5d と 20d の BBOB 関数に関する結果に基づいて,提案手法を用いて,最適に近い構成を同定することができる。
さらに、予測された構成は、多くの場合、単一最適解法と競合する。
全体としては、RGFとMA-BBOB関数の組み合わせでトレーニングされたNNモデルを使用することで、より優れたパフォーマンスを持つ構成を最もよく識別することができる。
関連論文リスト
- Impact of Training Instance Selection on Automated Algorithm Selection Models for Numerical Black-box Optimization [0.40498500266986387]
我々は,MA-BBOB生成関数が自動機械学習手法の理想的なテストベッドであることを示す。
8つのアルゴリズムの集合内で性能相補性を研究することにより,AASから得られる潜在的な利得を解析する。
トレーニングにBBOBコンポーネント関数を単純に使うと、テスト性能が低下することを示す。
論文 参考訳(メタデータ) (2024-04-11T08:03:53Z) - MA-BBOB: A Problem Generator for Black-Box Optimization Using Affine
Combinations and Shifts [1.2617078020344619]
本稿では,BBOBスイートをアフィン結合の成分関数として用いるMA-BBOB関数生成器を提案する。
我々は,MA-BBOBがアルゴリズムセレクタの幅広いトレーニングデータとテストデータを生成する可能性を示す。
論文 参考訳(メタデータ) (2023-12-18T10:23:09Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating
AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts [0.8258451067861933]
(MA-)BBOBは、一般公開のIOHファウンサープラットフォーム上に構築されている。
パフォーマンス分析と視覚化のためのインタラクティブなIOHanalyzerモジュールへのアクセスを提供し、(MA-)BBOB関数で利用可能なリッチで成長中のデータコレクションとの比較を可能にする。
論文 参考訳(メタデータ) (2023-06-18T19:32:12Z) - Deep Negative Correlation Classification [82.45045814842595]
既存のディープアンサンブル手法は、多くの異なるモデルをナビゲートし、予測を集約する。
深部負相関分類(DNCC)を提案する。
DNCCは、個々の推定器が正確かつ負の相関を持つ深い分類アンサンブルを生成する。
論文 参考訳(メタデータ) (2022-12-14T07:35:20Z) - Towards Automated Design of Bayesian Optimization via Exploratory
Landscape Analysis [11.143778114800272]
AFの動的選択はBO設計に有用であることを示す。
我々は,オートML支援のオンザフライBO設計への道を開き,その動作をランニング・バイ・ランで調整する。
論文 参考訳(メタデータ) (2022-11-17T17:15:04Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
市販の教師あり学習手法を用いて,高品質な性能予測が可能であることを示す。
このアプローチを,モジュール型CMA-ESアルゴリズム群から選択した,非常に類似したアルゴリズムのポートフォリオ上でテストする。
論文 参考訳(メタデータ) (2020-06-17T13:34:57Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。