論文の概要: EarthGen: Generating the World from Top-Down Views
- arxiv url: http://arxiv.org/abs/2409.01491v1
- Date: Mon, 2 Sep 2024 23:17:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 03:35:27.514833
- Title: EarthGen: Generating the World from Top-Down Views
- Title(参考訳): EarthGen:トップダウンビューから世界を生成する
- Authors: Ansh Sharma, Albert Xiao, Praneet Rathi, Rohit Kundu, Albert Zhai, Yuan Shen, Shenlong Wang,
- Abstract要約: 本稿では,広域な地形モデリングのための新しい手法を提案する。
我々のモデルの中核は超解像拡散モデルのカスケードであり、複数の解像度で一貫した画像を生成するために組み合わせることができる。
提案手法は,Bing Mapsから収集したデータセット上で評価し,超高解像度の1024倍ズーム処理において,超高解像度のベースラインよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 23.66194982885544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a novel method for extensive multi-scale generative terrain modeling. At the core of our model is a cascade of superresolution diffusion models that can be combined to produce consistent images across multiple resolutions. Pairing this concept with a tiled generation method yields a scalable system that can generate thousands of square kilometers of realistic Earth surfaces at high resolution. We evaluate our method on a dataset collected from Bing Maps and show that it outperforms super-resolution baselines on the extreme super-resolution task of 1024x zoom. We also demonstrate its ability to create diverse and coherent scenes via an interactive gigapixel-scale generated map. Finally, we demonstrate how our system can be extended to enable novel content creation applications including controllable world generation and 3D scene generation.
- Abstract(参考訳): そこで本研究では,広域地形モデリングのための新しい手法を提案する。
我々のモデルの中核は超解像拡散モデルのカスケードであり、複数の解像度で一貫した画像を生成するために組み合わせることができる。
この概念をタイル状生成法で適用することで、数千平方kmのリアルな地球表面を高解像度で生成できるスケーラブルなシステムが得られる。
提案手法は,Bing Mapsから収集したデータセット上で評価し,超高解像度の1024倍ズーム処理において,超高解像度のベースラインよりも優れていることを示す。
また,対話型ギガピクセルスケール生成マップを用いて,多様でコヒーレントなシーンを作成できることを示す。
最後に、制御可能なワールドジェネレーションや3Dシーン生成を含む新しいコンテンツ作成アプリケーションを実現するために、我々のシステムをいかに拡張できるかを実証する。
関連論文リスト
- Zero-Shot Novel View and Depth Synthesis with Multi-View Geometric Diffusion [27.836518920611557]
本稿では,新しい視点から画像や深度マップを直接生成できる拡散型アーキテクチャMVGDを紹介する。
このモデルは、公開データセットから6000万以上のマルチビューサンプルを収集した上でトレーニングします。
複数の新しいビュー合成ベンチマーク、マルチビューステレオおよびビデオ深度推定における最先端結果について報告する。
論文 参考訳(メタデータ) (2025-01-30T23:43:06Z) - CubeDiff: Repurposing Diffusion-Based Image Models for Panorama Generation [59.257513664564996]
テキストプロンプトや画像から360度パノラマを生成する新しい手法を提案する。
我々は多視点拡散モデルを用いて立方体の6つの面を合成する。
本モデルでは,テキストのきめ細かい制御,高解像度パノラマ画像の生成,トレーニングセットを越えた一般化を実現している。
論文 参考訳(メタデータ) (2025-01-28T18:59:49Z) - Can Location Embeddings Enhance Super-Resolution of Satellite Imagery? [2.3020018305241337]
センチネル2のような公共に利用可能な衛星画像は、リモートセンシングタスクの正確な分析に必要な空間解像度を欠いていることが多い。
位置情報の埋め込みを通じて地理的コンテキストを組み込むことで一般化を促進する新しい超解像フレームワークを提案する。
本研究では,建築セグメント化作業における手法の有効性を実証し,最先端の手法よりも大幅に改善したことを示す。
論文 参考訳(メタデータ) (2025-01-27T08:16:54Z) - InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models [75.03495065452955]
InfiniCubeはダイナミックな3次元駆動シーンを高忠実かつ制御性で生成するスケーラブルな方法である。
制御可能でリアルな3Dドライビングシーンを生成でき、モデルの有効性と優越性を広範囲にわたる実験により検証できる。
論文 参考訳(メタデータ) (2024-12-05T07:32:20Z) - MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation [24.193486441413803]
生成基盤モデルであるMetaEarthについて,画像生成をグローバルなレベルに拡大することで障壁を破る。
MetaEarthでは,地理的解像度の広い任意の領域で画像を生成するための自己カスケード型自己カスケード生成フレームワークを提案する。
我々のモデルは、革新的なオーバヘッドの観点から地球視覚をシミュレートすることで、生成的世界モデルを構築する新たな可能性を開く。
論文 参考訳(メタデータ) (2024-05-22T12:07:47Z) - Generative Powers of Ten [60.6740997942711]
本稿では,複数の画像スケールにまたがる一貫したコンテンツを生成するために,テキスト・ツー・イメージ・モデルを用いる手法を提案する。
マルチスケール拡散サンプリングを共同で行うことで実現した。
本手法は従来の超解像法よりも深いズームレベルを実現する。
論文 参考訳(メタデータ) (2023-12-04T18:59:25Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
拡散確率場(DPF)は、距離空間上で定義された連続関数の分布をモデル化する。
本稿では,局所構造学習に着目したビューワイズサンプリングアルゴリズムによる新しいモデルを提案する。
モデルは、複数のモダリティを統一しながら、高解像度のデータを生成するためにスケールすることができる。
論文 参考訳(メタデータ) (2023-05-24T03:32:03Z) - Any-resolution Training for High-resolution Image Synthesis [55.19874755679901]
生成モデルは、様々な大きさの自然画像であっても、一定の解像度で動作します。
すべてのピクセルが重要であり、そのネイティブ解像度で収集された可変サイズのイメージを持つデータセットを作成する、と我々は主張する。
ランダムなスケールでパッチをサンプリングし、可変出力解像度で新しいジェネレータを訓練するプロセスである。
論文 参考訳(メタデータ) (2022-04-14T17:59:31Z) - InfinityGAN: Towards Infinite-Resolution Image Synthesis [92.40782797030977]
任意の解像度画像を生成するinfinityganを提案する。
少ない計算資源でパッチバイパッチをシームレスに訓練し、推論する方法を示す。
論文 参考訳(メタデータ) (2021-04-08T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。