Long-Range Biometric Identification in Real World Scenarios: A Comprehensive Evaluation Framework Based on Missions
- URL: http://arxiv.org/abs/2409.01540v1
- Date: Tue, 3 Sep 2024 02:17:36 GMT
- Title: Long-Range Biometric Identification in Real World Scenarios: A Comprehensive Evaluation Framework Based on Missions
- Authors: Deniz Aykac, Joel Brogan, Nell Barber, Ryan Shivers, Bob Zhang, Dallas Sacca, Ryan Tipton, Gavin Jager, Austin Garret, Matthew Love, Jim Goddard, David Cornett III, David S. Bolme,
- Abstract summary: This paper evaluates research solutions for identifying individuals at ranges and altitudes.
By fusing face and body features, we propose developing robust biometric systems for effective long-range identification.
- Score: 11.557368031775717
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The considerable body of data available for evaluating biometric recognition systems in Research and Development (R\&D) environments has contributed to the increasingly common problem of target performance mismatch. Biometric algorithms are frequently tested against data that may not reflect the real world applications they target. From a Testing and Evaluation (T\&E) standpoint, this domain mismatch causes difficulty assessing when improvements in State-of-the-Art (SOTA) research actually translate to improved applied outcomes. This problem can be addressed with thoughtful preparation of data and experimental methods to reflect specific use-cases and scenarios. To that end, this paper evaluates research solutions for identifying individuals at ranges and altitudes, which could support various application areas such as counterterrorism, protection of critical infrastructure facilities, military force protection, and border security. We address challenges including image quality issues and reliance on face recognition as the sole biometric modality. By fusing face and body features, we propose developing robust biometric systems for effective long-range identification from both the ground and steep pitch angles. Preliminary results show promising progress in whole-body recognition. This paper presents these early findings and discusses potential future directions for advancing long-range biometric identification systems based on mission-driven metrics.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Model-Agnostic Utility-Preserving Biometric Information Anonymization [9.413512346732768]
The recent rapid advancements in both sensing and machine learning technologies have given rise to the universal collection and utilization of people's biometrics.
The use of biometrics has raised serious privacy concerns due to their intrinsic sensitive nature and the accompanying high risk of leaking sensitive information.
We propose a novel modality-agnostic data transformation framework that is capable of anonymizing biometric data by suppressing its sensitive attributes and retaining features relevant to downstream machine learning-based analyses.
arXiv Detail & Related papers (2024-05-23T21:21:40Z) - Cross-Database Liveness Detection: Insights from Comparative Biometric
Analysis [20.821562115822182]
Liveness detection is the capability to differentiate between genuine and spoofed biometric samples.
This research presents a comprehensive evaluation of liveness detection models.
Our work offers a blueprint for navigating the evolving rhythms of biometric security.
arXiv Detail & Related papers (2024-01-29T15:32:18Z) - Reversing the Irreversible: A Survey on Inverse Biometrics [1.9933615728711718]
It is now an accepted fact that it is possible to reconstruct from an unprotected template a synthetic sample that matches the bona fide one.
This reverse engineering process constitutes a severe threat for biometric systems from two different angles.
Biometric stakeholders have produced over the last fifteen years numerous works analysing the different aspects related to inverse biometrics.
arXiv Detail & Related papers (2024-01-05T15:32:40Z) - FarSight: A Physics-Driven Whole-Body Biometric System at Large Distance
and Altitude [67.55994773068191]
This paper presents the end-to-end design, development and evaluation of FarSight.
FarSight is an innovative software system designed for whole-body (fusion of face, gait and body shape) biometric recognition.
We test FarSight's effectiveness using the newly acquired IARPA Biometric Recognition and Identification at Altitude and Range dataset.
arXiv Detail & Related papers (2023-06-29T16:14:27Z) - Human Body Pose Estimation for Gait Identification: A Comprehensive
Survey of Datasets and Models [4.17510581764131]
Person identification is a problem that has received substantial attention, particularly in security domains.
There are several review studies addressing person identification such as the utilization of facial images, silhouette images, and wearable sensor.
Despite skeleton-based person identification gaining popularity while overcoming the challenges of traditional approaches, existing survey studies lack the comprehensive review of skeleton-based approaches to gait identification.
arXiv Detail & Related papers (2023-05-23T07:30:00Z) - A Survey on Computer Vision based Human Analysis in the COVID-19 Era [58.79053747159797]
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals.
Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications.
These developments triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication
arXiv Detail & Related papers (2022-11-07T17:20:39Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign.
The campaign targeted the application of physical access control in a medium-size establishment with some 500 persons.
To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
arXiv Detail & Related papers (2021-11-17T13:39:48Z) - Quality Measures in Biometric Systems [67.6699940572256]
Quality is a critical issue in security, especially in adverse scenarios involving surveillance cameras, forensics, portable devices, or remote access through the Internet.
This article analyzes what factors negatively impact biometric quality, how to overcome them, and how to incorporate quality measures into biometric systems.
arXiv Detail & Related papers (2021-11-17T13:28:07Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.