A Survey on Computer Vision based Human Analysis in the COVID-19 Era
- URL: http://arxiv.org/abs/2211.03705v1
- Date: Mon, 7 Nov 2022 17:20:39 GMT
- Title: A Survey on Computer Vision based Human Analysis in the COVID-19 Era
- Authors: Fevziye Irem Eyiokur, Alperen Kantarc{\i}, Mustafa Ekrem Erak{\i}n,
Naser Damer, Ferda Ofli, Muhammad Imran, Janez Kri\v{z}aj, Albert Ali Salah,
Alexander Waibel, Vitomir \v{S}truc, Haz{\i}m Kemal Ekenel
- Abstract summary: The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals.
Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications.
These developments triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication
- Score: 58.79053747159797
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emergence of COVID-19 has had a global and profound impact, not only on
society as a whole, but also on the lives of individuals. Various prevention
measures were introduced around the world to limit the transmission of the
disease, including face masks, mandates for social distancing and regular
disinfection in public spaces, and the use of screening applications. These
developments also triggered the need for novel and improved computer vision
techniques capable of (i) providing support to the prevention measures through
an automated analysis of visual data, on the one hand, and (ii) facilitating
normal operation of existing vision-based services, such as biometric
authentication schemes, on the other. Especially important here, are computer
vision techniques that focus on the analysis of people and faces in visual data
and have been affected the most by the partial occlusions introduced by the
mandates for facial masks. Such computer vision based human analysis techniques
include face and face-mask detection approaches, face recognition techniques,
crowd counting solutions, age and expression estimation procedures, models for
detecting face-hand interactions and many others, and have seen considerable
attention over recent years. The goal of this survey is to provide an
introduction to the problems induced by COVID-19 into such research and to
present a comprehensive review of the work done in the computer vision based
human analysis field. Particular attention is paid to the impact of facial
masks on the performance of various methods and recent solutions to mitigate
this problem. Additionally, a detailed review of existing datasets useful for
the development and evaluation of methods for COVID-19 related applications is
also provided. Finally, to help advance the field further, a discussion on the
main open challenges and future research direction is given.
Related papers
- A Comprehensive Survey of Masked Faces: Recognition, Detection, and Unmasking [0.5898893619901381]
Masked face recognition (MFR) has emerged as a critical domain in biometric identification, especially by the global COVID-19 pandemic.
This survey paper presents a comprehensive analysis of the challenges and advancements in recognising and detecting individuals with masked faces.
arXiv Detail & Related papers (2024-05-09T16:52:43Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - OpticalDR: A Deep Optical Imaging Model for Privacy-Protective
Depression Recognition [66.91236298878383]
Depression Recognition (DR) poses a considerable challenge, especially in the context of privacy concerns.
We design a new imaging system to erase the identity information of captured facial images while retain disease-relevant features.
It is irreversible for identity information recovery while preserving essential disease-related characteristics necessary for accurate DR.
arXiv Detail & Related papers (2024-02-29T01:20:29Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Psychophysical Evaluation of Human Performance in Detecting Digital Face
Image Manipulations [14.63266615325105]
This work introduces a web-based, remote visual discrimination experiment on the basis of principles adopted from the field of psychophysics.
We examine human proficiency in detecting different types of digitally manipulated face images, specifically face swapping, morphing, and retouching.
arXiv Detail & Related papers (2022-01-28T12:45:33Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
Coronavirus disease 2019 (COVID-19) continues to pose a great challenge to the world since its outbreak.
To fight against the disease, a series of artificial intelligence (AI) techniques are developed and applied to real-world scenarios.
In this paper, we primarily focus on the AI techniques of masked facial detection and related datasets.
arXiv Detail & Related papers (2022-01-13T03:28:20Z) - Automatic Gaze Analysis: A Survey of DeepLearning based Approaches [61.32686939754183]
Eye gaze analysis is an important research problem in the field of computer vision and Human-Computer Interaction.
There are several open questions including what are the important cues to interpret gaze direction in an unconstrained environment.
We review the progress across a range of gaze analysis tasks and applications to shed light on these fundamental questions.
arXiv Detail & Related papers (2021-08-12T00:30:39Z) - DeepSOCIAL: Social Distancing Monitoring and Infection Risk Assessment
in COVID-19 Pandemic [1.027974860479791]
Social distancing is a recommended solution by the World Health Organisation (WHO) to minimise the spread of COVID-19 in public places.
We develop a hybrid Computer Vision and YOLOv4-based Deep Neural Network model for automated people detection in the crowd using common CCTV cameras.
The developed model is a generic and accurate people detection and tracking solution that can be applied in many other fields.
arXiv Detail & Related papers (2020-08-26T16:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.