Dynamic Guidance Adversarial Distillation with Enhanced Teacher Knowledge
- URL: http://arxiv.org/abs/2409.01627v1
- Date: Tue, 3 Sep 2024 05:52:37 GMT
- Title: Dynamic Guidance Adversarial Distillation with Enhanced Teacher Knowledge
- Authors: Hyejin Park, Dongbo Min,
- Abstract summary: Dynamic Guidance Adversarial Distillation (DGAD) framework tackles the challenge of differential sample importance.
DGAD employs Misclassification-Aware Partitioning (MAP) to dynamically tailor the distillation focus.
Error-corrective Label Swapping (ELS) corrects misclassifications of the teacher on both clean and adversarially perturbed inputs.
- Score: 17.382306203152943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of Adversarial Distillation (AD), strategic and precise knowledge transfer from an adversarially robust teacher model to a less robust student model is paramount. Our Dynamic Guidance Adversarial Distillation (DGAD) framework directly tackles the challenge of differential sample importance, with a keen focus on rectifying the teacher model's misclassifications. DGAD employs Misclassification-Aware Partitioning (MAP) to dynamically tailor the distillation focus, optimizing the learning process by steering towards the most reliable teacher predictions. Additionally, our Error-corrective Label Swapping (ELS) corrects misclassifications of the teacher on both clean and adversarially perturbed inputs, refining the quality of knowledge transfer. Further, Predictive Consistency Regularization (PCR) guarantees consistent performance of the student model across both clean and adversarial inputs, significantly enhancing its overall robustness. By integrating these methodologies, DGAD significantly improves upon the accuracy of clean data and fortifies the model's defenses against sophisticated adversarial threats. Our experimental validation on CIFAR10, CIFAR100, and Tiny ImageNet datasets, employing various model architectures, demonstrates the efficacy of DGAD, establishing it as a promising approach for enhancing both the robustness and accuracy of student models in adversarial settings.
Related papers
- Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
We propose a pixel-level KD paradigm for semantic segmentation named Relative Difficulty Distillation (RDD)
RDD allows the teacher network to provide effective guidance on learning focus without additional optimization goals.
Our research showcases that RDD can integrate with existing KD methods to improve their upper performance bound.
arXiv Detail & Related papers (2024-07-04T08:08:25Z) - Improve Knowledge Distillation via Label Revision and Data Selection [37.74822443555646]
This paper proposes to rectify the teacher's inaccurate predictions using the ground truth.
In the latter, we introduce a data selection technique to choose suitable training samples to be supervised by the teacher.
Experiment results demonstrate the effectiveness of our proposed method, and show that our method can be combined with other distillation approaches.
arXiv Detail & Related papers (2024-04-03T02:41:16Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
Knowledge distillation (KD) improves the performance of efficient and lightweight models.
Most existing KD techniques rely on Kullback-Leibler (KL) divergence.
We propose a Robustness-Reinforced Knowledge Distillation (R2KD) that leverages correlation distance and network pruning.
arXiv Detail & Related papers (2023-11-23T11:34:48Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Mitigating Accuracy-Robustness Trade-off via Balanced Multi-Teacher Adversarial Distillation [12.39860047886679]
Adversarial Training is a practical approach for improving the robustness of deep neural networks against adversarial attacks.
We introduce Balanced Multi-Teacher Adversarial Robustness Distillation (B-MTARD) to guide the model's Adversarial Training process.
B-MTARD outperforms the state-of-the-art methods against various adversarial attacks.
arXiv Detail & Related papers (2023-06-28T12:47:01Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - How and When Adversarial Robustness Transfers in Knowledge Distillation? [137.11016173468457]
This paper studies how and when the adversarial robustness can be transferred from a teacher model to a student model in Knowledge distillation (KD)
We show that standard KD training fails to preserve adversarial robustness, and we propose KD with input gradient alignment (KDIGA) for remedy.
Under certain assumptions, we prove that the student model using our proposed KDIGA can achieve at least the same certified robustness as the teacher model.
arXiv Detail & Related papers (2021-10-22T21:30:53Z) - Knowledge Distillation as Semiparametric Inference [44.572422527672416]
A popular approach to model compression is to train an inexpensive student model to mimic the class probabilities of a highly accurate but cumbersome teacher model.
This two-step knowledge distillation process often leads to higher accuracy than training the student directly on labeled data.
We cast knowledge distillation as a semiparametric inference problem with the optimal student model as the target, the unknown Bayes class probabilities as nuisance, and the teacher probabilities as a plug-in nuisance estimate.
arXiv Detail & Related papers (2021-04-20T03:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.