論文の概要: Surface Flux Transport Modeling using Physics Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2409.01744v2
- Date: Wed, 20 Nov 2024 06:56:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:09:31.943236
- Title: Surface Flux Transport Modeling using Physics Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークを用いた表面フラックス輸送モデリング
- Authors: Jithu J Athalathil, Bhargav Vaidya, Sayan Kundu, Vishal Upendran, Mark C. M. Cheung,
- Abstract要約: 表面フラックス輸送(SFT)モデリングは、太陽表面の磁束の輸送と進化をシミュレートし、解析するのに役立つ。
本研究では,磁束輸送の解法における機械学習の応用を実証し,その精度を検証した。
SFTを用いたバイポーラ磁気領域(BMR)の進化を研究するための新しい物理情報ニューラルネットワーク(PINN)モデルを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Studying the magnetic field properties on the solar surface is crucial for understanding the solar and heliospheric activities, which in turn shape space weather in the solar system. Surface Flux Transport (SFT) modeling helps us to simulate and analyse the transport and evolution of magnetic flux on the solar surface, providing valuable insights into the mechanisms responsible for solar activity. In this work, we demonstrate the use of machine learning techniques in solving magnetic flux transport, making it accurate. We have developed a novel Physics-Informed Neural Networks (PINN)-based model to study the evolution of Bipolar Magnetic Regions (BMRs) using SFT in one-dimensional azimuthally averaged and also in two-dimensions. We demonstrate the efficiency and computational feasibility of our PINN-based model by comparing its performance and accuracy with that of a numerical model implemented using the Runge-Kutta Implicit-Explicit (RK-IMEX) scheme. The mesh-independent PINN method can be used to reproduce the observed polar magnetic field with better flux conservation. This advancement is important for accurately reproducing observed polar magnetic fields, thereby providing insights into the strength of future solar cycles. This work paves the way for more efficient and accurate simulations of solar magnetic flux transport and showcases the applicability of PINN in solving advection-diffusion equations with a particular focus on heliophysics.
- Abstract(参考訳): 太陽表面の磁場特性を研究することは、太陽活動と太陽圏活動を理解するために重要である。
表面フラックス輸送(SFT)モデリングは、太陽表面における磁束の輸送と進化をシミュレートし分析し、太陽活動に関与するメカニズムに関する貴重な洞察を提供する。
本研究では,磁束輸送の解法における機械学習の応用を実証し,その精度を検証した。
我々は,SFTを用いたバイポーラ磁気領域(BMR)の進化を1次元方位平均および2次元で研究するための新しい物理情報ニューラルネットワーク(PINN)モデルを開発した。
本稿では,RK-IMEX(Runge-Kutta Implicit-Explicit)方式を用いて実装した数値モデルと,その性能と精度を比較し,PINNモデルの有効性を実証する。
メッシュ非依存のPINN法は、観測された極磁場をより優れたフラックス保存で再現することができる。
この進歩は観測された極磁場を正確に再現するために重要であり、将来の太陽周期の強さに関する洞察を与える。
この研究は太陽磁束輸送のより効率的かつ正確なシミュレーションの道を開き、特にヘリオ物理に焦点を当てた対流拡散方程式の解法におけるPINNの適用性を示す。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution [0.0]
DDPM(Denoising Diffusion Probabilistic Models)を用いた画像と画像の変換による視線(LoS)磁気グラムの進化予測手法を提案する。
提案手法は,画像品質の「計算機科学メトリクス」と物理精度の「物理メトリクス」を組み合わせて,モデル性能の評価を行う。
その結果, DDPMは, 太陽磁場の動的範囲, 磁束, 活動領域の大きさなどの物理的特徴の維持に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-07-16T12:28:10Z) - Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams [0.0]
HMI強度図とマグネティックグラムを用いた極端太陽フレアの予測手法を提案する。
強度図から太陽点を検出し、磁気グラムから磁場パッチを抽出することにより、極度のクラスフレアを分類するためにResidual Network(ResNet)を訓練する。
我々のモデルは高精度で、極端太陽フレアを予測し、宇宙天気予報を改善するための堅牢なツールを提供する。
論文 参考訳(メタデータ) (2024-05-23T16:17:16Z) - Machine learning force-field models for metallic spin glass [4.090038845129619]
金属スピングラスの動的シミュレーションのためのスケーラブルな機械学習フレームワークを提案する。
Behler-Parrinello型ニューラルネットワークモデルを開発し、電子誘起局所磁場を高精度かつ効率的に予測する。
論文 参考訳(メタデータ) (2023-11-28T17:12:03Z) - Plasma Surrogate Modelling using Fourier Neural Operators [57.52074029826172]
トカマク炉内のプラズマの進化を予測することは、持続可能な核融合の目標を実現するために不可欠である。
深層学習に基づく代理モデルツールviz., Neural Operators (FNO) を用いた進化プラズマの正確な予測を実証する。
我々は、FNOが磁気流体力学モデルからシミュレーションされたプラズマ力学を予測する際に、従来の解法よりも6桁の速度を持つことを示した。
FNOは、MASTトカマク内のカメラで観測された実世界の実験データに基づいて、プラズマの進化を予測することもできる。
論文 参考訳(メタデータ) (2023-11-10T10:05:00Z) - Physics-driven machine learning for the prediction of coronal mass
ejections' travel times [46.58747894238344]
コロナ質量放出(CME)は、太陽コロナからヘリウム圏へのプラズマと磁場の劇的な放出に対応する。
CMEは地磁気嵐と相関しており、太陽エネルギー粒子の流れを発生させる可能性がある。
本稿では,CMEの走行時間予測のための物理駆動型人工知能手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T08:53:29Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Prediction of solar wind speed by applying convolutional neural network
to potential field source surface (PFSS) magnetograms [2.124527370393348]
このモデルは、平均相関係数0.52、根平均二乗誤差80.8km/sの連続試験データセットの予測を提供する。
このモデルはまた、太陽風の高速な流れを予測できる可能性があり、これは一般的な脅威スコア0.39で定量化することができる。
論文 参考訳(メタデータ) (2023-04-03T06:54:22Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Toward a Next Generation Particle Precipitation Model: Mesoscale
Prediction Through Machine Learning (a Case Study and Framework for Progress) [0.9158190669770423]
我々は、新しい、より有能な粒子沈殿データのデータベースを作成、キュレート、分析し、利用可能にした。
PrecipNetと呼ばれるニューラルネットワークは、MLアプローチによって得られる表現力の増大を活用する。
論文 参考訳(メタデータ) (2020-11-19T21:54:36Z) - Learning Latent Space Energy-Based Prior Model [118.86447805707094]
我々はジェネレータモデルの潜在空間でエネルギーベースモデル(EBM)を学習する。
学習したモデルが画像やテキストの生成や異常検出の点で強い性能を示すことを示す。
論文 参考訳(メタデータ) (2020-06-15T08:11:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。