論文の概要: State-of-the-art Advances of Deep-learning Linguistic Steganalysis Research
- arxiv url: http://arxiv.org/abs/2409.01780v1
- Date: Tue, 3 Sep 2024 10:49:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:01:57.472363
- Title: State-of-the-art Advances of Deep-learning Linguistic Steganalysis Research
- Title(参考訳): 深層学習言語ステガナリシス研究の現状と展望
- Authors: Yihao Wang, Ru Zhang, Yifan Tang, Jianyi Liu,
- Abstract要約: 本研究は,既存のコントリビューションを包括的にレビューし,発達軌跡の評価を行う。
まず、この分野とテキスト分類の領域の違いを比較しながら、言語ステガナリシスの一般式を公式化した。
既存の研究をベクトル空間マッピングと特徴抽出モデルに基づいて2つのレベルに分類し,研究の動機,モデルの利点,その他の詳細を比較検討した。
- 参考スコア(独自算出の注目度): 6.99735992267331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the evolution of generative linguistic steganography techniques, conventional steganalysis falls short in robustly quantifying the alterations induced by steganography, thereby complicating detection. Consequently, the research paradigm has pivoted towards deep-learning-based linguistic steganalysis. This study offers a comprehensive review of existing contributions and evaluates prevailing developmental trajectories. Specifically, we first provided a formalized exposition of the general formulas for linguistic steganalysis, while comparing the differences between this field and the domain of text classification. Subsequently, we classified the existing work into two levels based on vector space mapping and feature extraction models, thereby comparing the research motivations, model advantages, and other details. A comparative analysis of the experiments is conducted to assess the performances. Finally, the challenges faced by this field are discussed, and several directions for future development and key issues that urgently need to be addressed are proposed.
- Abstract(参考訳): 生成的言語ステガノグラフィー技術の進化に伴い、従来のステガナリシスは、ステガノグラフィーによって引き起こされる変化を堅牢に定量化するに足りず、検出が複雑になる。
その結果、研究パラダイムは深層学習に基づく言語ステガナリシスへと転換した。
本研究は,既存のコントリビューションを包括的にレビューし,発達軌跡の評価を行う。
具体的には、まず、この分野とテキスト分類の領域の違いを比較しながら、言語ステガナリシスの一般的な公式の形式化された表現を提供した。
その後、ベクトル空間マッピングと特徴抽出モデルに基づいて既存の研究を2つのレベルに分類し、研究モチベーション、モデルアドバンテージ、その他の詳細を比較した。
実験結果の比較分析を行い,評価を行った。
最後に、この分野で直面する課題について論じ、今後の発展に向けてのいくつかの方向性と、緊急に対処する必要がある重要な課題について論じる。
関連論文リスト
- A Review of Deep Learning Approaches for Non-Invasive Cognitive Impairment Detection [35.31259047578382]
本稿では,非侵襲的認知障害検出のためのディープラーニング手法の最近の進歩を概説する。
音声や言語,顔,運動運動など,認知低下の非侵襲的指標について検討した。
著しい進歩にもかかわらず、データ標準化とアクセシビリティ、モデル説明可能性、縦断解析の限界、臨床適応などいくつかの課題が残っている。
論文 参考訳(メタデータ) (2024-10-25T17:44:59Z) - Comprehensive Study on Sentiment Analysis: From Rule-based to modern LLM based system [0.0]
本研究では、感情分析の歴史的発展を考察し、レキシコンベースおよびパターンベースアプローチから、より洗練された機械学習およびディープラーニングモデルへの移行を強調した。
本稿は、最先端のアプローチをレビューし、新たなトレンドを特定し、今後の研究の方向性を概説する。
論文 参考訳(メタデータ) (2024-09-16T04:44:52Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Systematic Analysis of COVID-19 Ontologies [5.286727853896068]
この研究は、関連する文献の体系的なレビューを伴って、二重段階のアプローチによって実施される。
新型コロナウイルスのオントロジー(CovOs)を24種選択し,検討した。
METHONTOLOGYアプローチは、しばしばアプリケーションベースまたはデータ中心の評価手法と組み合わせて、好ましい設計手法として現れる。
論文 参考訳(メタデータ) (2023-09-15T18:17:01Z) - Recent Advances in Direct Speech-to-text Translation [58.692782919570845]
我々は、既存の研究成果を、モデリングの負担、データの不足、アプリケーション問題という3つの課題に基づいて分類する。
データ不足の課題に対して、最近の研究は、データ強化、事前学習、知識蒸留、多言語モデリングなど、多くの高度な技術を活用している。
我々は、リアルタイム、セグメンテーション、名前付きエンティティ、性別バイアス、コードスイッチングなど、アプリケーションの問題を分析して要約する。
論文 参考訳(メタデータ) (2023-06-20T16:14:27Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
我々は、静的DSMによって生成されたり、BERTによって生成された文脈化されたベクトルを平均化して得られるような、型分布ベクトルの包括的評価を行う。
その結果、予測ベースモデルの優越性は現実よりも明らかであり、ユビキタスではないことが明らかとなった。
我々は認知神経科学からRepresentational similarity Analysis(RSA)の方法論を借りて、分布モデルによって生成された意味空間を検査する。
論文 参考訳(メタデータ) (2021-05-20T15:18:06Z) - A Discussion on Practical Considerations with Sparse Regression
Methodologies [0.0]
統計科学に掲載された2つの論文は、いくつかのスパース回帰法の比較性能について研究している。
この2つの研究を要約して比較し,ユーザへの明快さと価値の提供を目指す。
論文 参考訳(メタデータ) (2020-11-18T15:58:35Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
文法に基づく意味解析を行い,その上に典型的な文脈モデリング手法を適用する。
我々は,2つの大きなクロスドメインデータセットに対して,13のコンテキストモデリング手法を評価した。
論文 参考訳(メタデータ) (2020-02-03T11:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。