Privacy-Preserving and Post-Quantum Counter Denial of Service Framework for Wireless Networks
- URL: http://arxiv.org/abs/2409.01924v1
- Date: Tue, 3 Sep 2024 14:14:41 GMT
- Title: Privacy-Preserving and Post-Quantum Counter Denial of Service Framework for Wireless Networks
- Authors: Saleh Darzi, Attila Altay Yavuz,
- Abstract summary: PACDoSQ is first framework to offer location privacy and anonymity for spectrum management with counter DoS and PQ security simultaneously.
We show that PACDoSQ achieves its security objectives, and show its feasibility via a comprehensive performance evaluation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As network services progress and mobile and IoT environments expand, numerous security concerns have surfaced for spectrum access systems. The omnipresent risk of Denial-of-Service (DoS) attacks and raising concerns about user privacy (e.g., location privacy, anonymity) are among such cyber threats. These security and privacy risks increase due to the threat of quantum computers that can compromise long-term security by circumventing conventional cryptosystems and increasing the cost of countermeasures. While some defense mechanisms exist against these threats in isolation, there is a significant gap in the state of the art on a holistic solution against DoS attacks with privacy and anonymity for spectrum management systems, especially when post-quantum (PQ) security is in mind. In this paper, we propose a new cybersecurity framework PACDoSQ, which is (to the best of our knowledge) the first to offer location privacy and anonymity for spectrum management with counter DoS and PQ security simultaneously. Our solution introduces the private spectrum bastion (database) concept to exploit existing architectural features of spectrum management systems and then synergizes them with multi-server private information retrieval and PQ-secure Tor to guarantee a location-private and anonymous acquisition of spectrum information together with hash-based client-server puzzles for counter DoS. We prove that PACDoSQ achieves its security objectives, and show its feasibility via a comprehensive performance evaluation.
Related papers
- Enabling Security on the Edge: A CHERI Compartmentalized Network Stack [42.78181795494584]
CHERI provides strong security from the hardware level by enabling fine-grained compartmentalization and memory protection.<n>Our case study examines the trade-offs of isolating applications, TCP/IP libraries, and network drivers on a CheriBSD system deployed on the Arm Morello platform.
arXiv Detail & Related papers (2025-07-07T09:37:59Z) - CyFence: Securing Cyber-Physical Controllers via Trusted Execution Environment [45.86654759872101]
Cyber-physical systems (CPSs) have experienced a significant technological evolution and increased connectivity, at the cost of greater exposure to cyber-attacks.<n>We propose CyFence, a novel architecture that improves the resilience of closed-loop control systems against cyber-attacks by adding a semantic check.<n>We evaluate CyFence considering a real-world application, consisting of an active braking digital controller, demonstrating that it can mitigate different types of attacks with a negligible overhead.
arXiv Detail & Related papers (2025-06-12T12:22:45Z) - Network Hexagons Under Attack: Secure Crowdsourcing of Geo-Referenced Data [0.0]
We propose an enhanced security architecture that combines public key infrastructure (PKI) with ephemeral certificates.<n>Our solution guarantees user and device anonymity through randomized key rotation and adaptive geospatial resolution.<n>Our results show that it is possible to achieve the required level of security without increasing latency by more than 25% or reducing the throughput by more than 7%.
arXiv Detail & Related papers (2025-06-05T21:27:10Z) - PWC-MoE: Privacy-Aware Wireless Collaborative Mixture of Experts [59.5243730853157]
Large language models (LLMs) hosted on cloud servers alleviate the computational and storage burdens on local devices but raise privacy concerns.<n>Small language models (SLMs) running locally enhance privacy but suffer from limited performance on complex tasks.<n>We propose a privacy-aware wireless collaborative mixture of experts (PWC-MoE) framework to balance computational cost, performance, and privacy protection under bandwidth constraints.
arXiv Detail & Related papers (2025-05-13T16:27:07Z) - SLAP: Secure Location-proof and Anonymous Privacy-preserving Spectrum Access [2.156208381257605]
We propose a novel framework that ensures location privacy and anonymity during spectrum queries, usage notifications, and location-proof acquisition.
Our solution includes an adaptive dual-scenario location verification mechanism with architectural flexibility and a fallback option, along with a counter-DoS approach using time-lock puzzles.
arXiv Detail & Related papers (2025-03-03T19:52:56Z) - Onion Routing Key Distribution for QKDN [1.8637078358591843]
The advance of quantum computing poses a significant threat to classical cryptography.
Two main approaches have emerged: quantum cryptography and post-quantum cryptography.
We propose a secure key distribution protocol for Quantum Key Distribution Networks (QKDN)
arXiv Detail & Related papers (2025-02-10T16:47:42Z) - Application of $α$-order Information Metrics for Secure Communication in Quantum Physical Layer Design [45.41082277680607]
We study the $alpha$-order information-theoretic metrics based on R'enyi entropy.<n>We apply our framework to a practical scenario involving BPSK modulation over a lossy bosonic channel.
arXiv Detail & Related papers (2025-02-07T03:44:11Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
We introduce a novel Mixture-of-Experts (MoE)-based SemCom system.
This system comprises a gating network and multiple experts, each specializing in different security challenges.
The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements.
A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system.
arXiv Detail & Related papers (2024-09-24T03:17:51Z) - Confidential Federated Computations [16.415880530250092]
Federated Learning and Analytics (FLA) have seen widespread adoption by technology platforms for processing sensitive on-device data.
FLA systems do not necessarily require anonymization mechanisms like differential privacy (DP)
This paper introduces a novel system architecture that leverages trusted execution environments (TEEs) and open-sourcing to ensure confidentiality of server-side computations.
arXiv Detail & Related papers (2024-04-16T17:47:27Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
This analysis explores the impact of quantum computing on critical infrastructure and cloud services.
We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography.
This blueprint strengthens each area's defenses against potential quantum-induced cyber threats.
arXiv Detail & Related papers (2024-04-16T15:36:23Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
We investigate the privacy implications of SecAgg in federated learning.
We show that SecAgg offers weak privacy against membership inference attacks even in a single training round.
Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection.
arXiv Detail & Related papers (2024-03-26T15:07:58Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - How Resilient is QUIC to Security and Privacy Attacks? [2.621434923709917]
QUIC has rapidly evolved into a cornerstone transport protocol for secure, low-latency communications.<n>This paper systematically revisits a comprehensive set of attacks on QUIC and emerging privacy threats.
arXiv Detail & Related papers (2024-01-12T16:05:13Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Fortress: Securing IoT Peripherals with Trusted Execution Environments [2.2476099815732518]
Internet of Things (IoT) devices often collect confidential information, such as audio and visual data, through peripheral inputs like microphones and cameras.
We propose a generic design to enhance the privacy in IoT-based systems by isolating peripheral I/O memory regions in a secure kernel space of a trusted execution environment (TEE)
The sensitive peripheral data is then securely transferred to a user-space TEE, where obfuscation mechanisms can be applied before it is relayed to third parties, e.g., the cloud.
arXiv Detail & Related papers (2023-12-05T07:12:58Z) - Quantum Key Distribution for Critical Infrastructures: Towards Cyber
Physical Security for Hydropower and Dams [0.4166512373146748]
Hydropower facilities are often remotely monitored or controlled from a centralized remote-control room.
Communications may use the internet to remote control a facility's control systems, or it may involve sending control commands over a network from a control room to a machine.
The content could be encrypted and decrypted using a public key to protect the communicated information.
In contrast, quantum key distribution (QKD) is not based upon a computational problem, and offers an alternative to conventional public-key cryptography.
arXiv Detail & Related papers (2023-10-19T18:59:23Z) - Towards security recommendations for public-key infrastructures for
production environments in the post-quantum era [0.0]
Quantum computing technologies pose a significant threat to the currently employed public-key cryptography protocols.
We analyze security issues of existing models with a focus on requirements for a fast transition to post-quantum solutions.
arXiv Detail & Related papers (2021-05-04T07:11:57Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.