Towards security recommendations for public-key infrastructures for
production environments in the post-quantum era
- URL: http://arxiv.org/abs/2105.01324v2
- Date: Wed, 23 Jun 2021 07:45:29 GMT
- Title: Towards security recommendations for public-key infrastructures for
production environments in the post-quantum era
- Authors: S.E. Yunakovsky, M. Kot, N.O. Pozhar, D. Nabokov, M.A. Kudinov, A.
Guglya, E.O. Kiktenko, E. Kolycheva, A. Borisov, and A.K. Fedorov
- Abstract summary: Quantum computing technologies pose a significant threat to the currently employed public-key cryptography protocols.
We analyze security issues of existing models with a focus on requirements for a fast transition to post-quantum solutions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing technologies pose a significant threat to the currently
employed public-key cryptography protocols. In this paper, we discuss the
impact of the quantum threat on public key infrastructures (PKIs), which are
used as a part of security systems for protecting production environments. We
analyze security issues of existing models with a focus on requirements for a
fast transition to post-quantum solutions. Although our primary focus is on the
attacks with quantum computing, we also discuss some security issues that are
not directly related to the used cryptographic algorithms but are essential for
the overall security of the PKI. We attempt to provide a set of security
recommendations regarding the PKI from the viewpoints of attacks with quantum
computers.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - A Security Assessment tool for Quantum Threat Analysis [34.94301200620856]
The rapid advancement of quantum computing poses a significant threat to many current security algorithms used for secure communication, digital authentication, and information encryption.
A sufficiently powerful quantum computer could potentially exploit vulnerabilities in these algorithms, rendering data in insecure transit.
This work developed a quantum assessment tool for organizations, providing tailored recommendations for transitioning their security protocols into a post-quantum world.
arXiv Detail & Related papers (2024-07-18T13:58:34Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
This analysis explores the impact of quantum computing on critical infrastructure and cloud services.
We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography.
This blueprint strengthens each area's defenses against potential quantum-induced cyber threats.
arXiv Detail & Related papers (2024-04-16T15:36:23Z) - Navigating Quantum Security Risks in Networked Environments: A Comprehensive Study of Quantum-Safe Network Protocols [1.7887848708497236]
The emergence of quantum computing poses a formidable security challenge to network protocols.
This paper provides an exhaustive analysis of vulnerabilities introduced by quantum computing in a diverse array of widely utilized security protocols.
arXiv Detail & Related papers (2024-04-12T04:20:05Z) - Evaluation Framework for Quantum Security Risk Assessment: A Comprehensive Study for Quantum-Safe Migration [0.03749861135832072]
The rise of large-scale quantum computing poses a significant threat to traditional cryptographic security measures.
Quantum attacks undermine current asymmetric cryptographic algorithms, rendering them ineffective.
This study explores the challenges of migrating to quantum-safe cryptographic states.
arXiv Detail & Related papers (2024-04-12T04:18:58Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Cybersecurity in Critical Infrastructures: A Post-Quantum Cryptography Perspective [0.0]
Implementing cryptosystems in industrial communication networks faces a trade-off between the security of the communications and the amortization of the industrial infrastructure.
New threat to cybersecurity has arisen with the theoretical proposal of quantum computers.
Many global agents have become aware that transitioning their secure communications to a quantum secure paradigm is a priority that should be established before the arrival of fault-tolerance.
arXiv Detail & Related papers (2024-01-08T10:02:48Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Single-Photon-Memory Measurement-Device-Independent Quantum Secure
Direct Communication -- Part I: Its Fundamentals and Evolution [63.75763893884079]
Quantum secure direct communication (QSDC) has attracted a lot of attention, which exploits deep-rooted quantum physical principles to guarantee unconditional security of communication in the face of eavesdropping.
We first briefly review the fundamentals of QSDC, and then present its evolution, including its security proof, its performance improvement techniques, and practical implementation.
arXiv Detail & Related papers (2023-04-19T02:26:25Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.