論文の概要: Map-Assisted Remote-Sensing Image Compression at Extremely Low Bitrates
- arxiv url: http://arxiv.org/abs/2409.01935v1
- Date: Tue, 3 Sep 2024 14:29:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 01:08:09.494566
- Title: Map-Assisted Remote-Sensing Image Compression at Extremely Low Bitrates
- Title(参考訳): 極低ビットレートでの地図支援リモートセンシング画像圧縮
- Authors: Yixuan Ye, Ce Wang, Wanjie Sun, Zhenzhong Chen,
- Abstract要約: 生成モデルはRS画像を極低ビットレートストリームに圧縮するために研究されている。
これらの生成モデルは、非常に低ビットレート画像圧縮の極めて不適切な性質のため、視覚的に可視な画像の再構成に苦慮している。
本研究では,高現実性再構築を実現するために,自然画像に先行した事前学習拡散モデルを用いた画像圧縮フレームワークを提案する。
- 参考スコア(独自算出の注目度): 47.47031054057152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote-sensing (RS) image compression at extremely low bitrates has always been a challenging task in practical scenarios like edge device storage and narrow bandwidth transmission. Generative models including VAEs and GANs have been explored to compress RS images into extremely low-bitrate streams. However, these generative models struggle to reconstruct visually plausible images due to the highly ill-posed nature of extremely low-bitrate image compression. To this end, we propose an image compression framework that utilizes a pre-trained diffusion model with powerful natural image priors to achieve high-realism reconstructions. However, diffusion models tend to hallucinate small structures and textures due to the significant information loss at limited bitrates. Thus, we introduce vector maps as semantic and structural guidance and propose a novel image compression approach named Map-Assisted Generative Compression (MAGC). MAGC employs a two-stage pipeline to compress and decompress RS images at extremely low bitrates. The first stage maps an image into a latent representation, which is then further compressed in a VAE architecture to save bitrates and serves as implicit guidance in the subsequent diffusion process. The second stage conducts a conditional diffusion model to generate a visually pleasing and semantically accurate result using implicit guidance and explicit semantic guidance. Quantitative and qualitative comparisons show that our method outperforms standard codecs and other learning-based methods in terms of perceptual quality and semantic accuracy. The dataset and code will be publicly available at https://github.com/WHUyyx/MAGC.
- Abstract(参考訳): 極低ビットレートでのリモートセンシング(RS)画像圧縮は、エッジデバイスストレージや狭帯域伝送といった現実的なシナリオにおいて、常に難しい課題であった。
VAEやGANなどの生成モデルは、RS画像を極低ビットレートストリームに圧縮するために研究されている。
しかし、これらの生成モデルは、非常に低ビットレート画像圧縮の極めて不適切な性質のため、視覚的に可視な画像の再構成に苦慮している。
そこで,本稿では,高現実性再構築を実現するために,自然画像に先行した事前学習による拡散モデルを用いた画像圧縮フレームワークを提案する。
しかし拡散モデルは、限られたビットレートにおいて重要な情報損失のため、小さな構造やテクスチャを幻覚させる傾向がある。
そこで本研究では,ベクトルマップを意味的・構造的ガイダンスとして導入し,新しい画像圧縮手法である Map-Assisted Generative Compression (MAGC) を提案する。
MAGCは2段階のパイプラインを使用して、RS画像を極低ビットレートで圧縮・圧縮する。
最初のステージは画像を潜在表現にマッピングし、VAEアーキテクチャでさらに圧縮してビットレートを保存し、その後の拡散過程において暗黙のガイダンスとして機能させる。
第2段階は条件拡散モデルを実行し、暗黙的なガイダンスと明示的な意味的ガイダンスを用いて視覚的に快く、意味的に正確な結果を生成する。
定量的および定性的な比較により,本手法は知覚的品質と意味的正確性の観点から,標準コーデックや他の学習ベース手法よりも優れていることが示された。
データセットとコードはhttps://github.com/WHUyyx/MAGC.comで公開される。
関連論文リスト
- Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior [8.772652777234315]
本稿では,事前学習した拡散モデルの強力な生成能力を生かした,新しい2段階の極端画像圧縮フレームワークを提案する。
本手法は, 視覚的性能を極端に低め, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-29T16:02:38Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
本稿では,マルチモーダル画像セマンティック圧縮法を提案する。
画像の意味情報を抽出するLMMエンコーダと、その意味に対応する領域を特定するマップエンコーダと、非常に圧縮されたビットストリームを生成する画像エンコーダと、前記情報に基づいて画像を再構成するデコーダとからなる。
知覚50%を節約しながら最適な一貫性と知覚結果を達成することができ、これは次世代のストレージと通信において強力な可能性を持つ。
論文 参考訳(メタデータ) (2024-02-26T17:11:11Z) - Transferable Learned Image Compression-Resistant Adversarial
Perturbations [69.79762292033553]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
本研究では,潜在拡散モデル(LDM)を用いた医用画像の圧縮・圧縮のための新しい枠組みを提案する。
LDMは, 拡散確率モデル (DDPM) の進歩を表現し, 優れた画質が得られる可能性が示唆された。
医用画像データを用いた画像アップスケーリングにおけるLCMとTorchvisionの応用の可能性について検討した。
論文 参考訳(メタデータ) (2023-10-08T22:08:59Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
本稿ではベクトル量子化(VQ)に基づく生成モデルを画像圧縮領域に導入する。
VQGANモデルによって学習されたコードブックは、強い表現能力をもたらす。
提案したフレームワークは、知覚的品質指向のメトリクスで最先端のコーデックより優れている。
論文 参考訳(メタデータ) (2023-07-17T06:14:19Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
近年,学習画像圧縮(lic)法は大きな進歩を遂げている。
licメソッドは、画像圧縮に不可欠な画像構造とテクスチャコンポーネントを明示的に探索することができない。
原画像の構造とテクスチャに基づいて可視パッチをサンプリングするDA-Maskを提案する。
極めて低ビットレート圧縮のために, lic と lic のエンドツーエンドを統一する最初のフレームワークである, 単純で効果的なマスク付き圧縮モデル (MCM) を提案する。
論文 参考訳(メタデータ) (2023-06-27T15:36:22Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
既存の学習画像圧縮モデルは畳み込みニューラルネットワーク(CNN)に基づいている。
本稿では,複数種類の注意機構が局所特徴学習に与える影響について検討し,より単純で効果的なウィンドウベースの局所的注意ブロックを提案する。
提案されたウィンドウベースのアテンションは非常に柔軟で、CNNとTransformerモデルを強化するためのプラグイン・アンド・プレイコンポーネントとして機能する可能性がある。
論文 参考訳(メタデータ) (2022-03-16T07:55:49Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。