AttDiCNN: Attentive Dilated Convolutional Neural Network for Automatic Sleep Staging using Visibility Graph and Force-directed Layout
- URL: http://arxiv.org/abs/2409.01962v1
- Date: Wed, 21 Aug 2024 06:35:50 GMT
- Title: AttDiCNN: Attentive Dilated Convolutional Neural Network for Automatic Sleep Staging using Visibility Graph and Force-directed Layout
- Authors: Md Jobayer, Md. Mehedi Hasan Shawon, Tasfin Mahmud, Md. Borhan Uddin Antor, Arshad M. Chowdhury,
- Abstract summary: We present an automated sleep stage classifier termed the Attentive Dilated Convolutional Neural Network (AttDiCNN)
We employ a force-directed layout based on the visibility graph to capture the most significant information from the EEG signals.
The network consists of three compositors: the Localized Spatial Feature Extraction Network (LSFE), the Spatio-Temporal-Temporal Long Retention Network (S2TLR), and the Global Averaging Attention Network (G2A)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sleep stages play an essential role in the identification of sleep patterns and the diagnosis of sleep disorders. In this study, we present an automated sleep stage classifier termed the Attentive Dilated Convolutional Neural Network (AttDiCNN), which uses deep learning methodologies to address challenges related to data heterogeneity, computational complexity, and reliable automatic sleep staging. We employed a force-directed layout based on the visibility graph to capture the most significant information from the EEG signals, representing the spatial-temporal features. The proposed network consists of three compositors: the Localized Spatial Feature Extraction Network (LSFE), the Spatio-Temporal-Temporal Long Retention Network (S2TLR), and the Global Averaging Attention Network (G2A). The LSFE is tasked with capturing spatial information from sleep data, the S2TLR is designed to extract the most pertinent information in long-term contexts, and the G2A reduces computational overhead by aggregating information from the LSFE and S2TLR. We evaluated the performance of our model on three comprehensive and publicly accessible datasets, achieving state-of-the-art accuracy of 98.56%, 99.66%, and 99.08% for the EDFX, HMC, and NCH datasets, respectively, yet maintaining a low computational complexity with 1.4 M parameters. The results substantiate that our proposed architecture surpasses existing methodologies in several performance metrics, thus proving its potential as an automated tool in clinical settings.
Related papers
- Two-Stage Hierarchical and Explainable Feature Selection Framework for Dimensionality Reduction in Sleep Staging [0.6216545676226375]
EEG signals play a significant role in sleep research.
Due to the high-dimensional nature of EEG signal data sequences, data visualization and clustering of different sleep stages have been challenges.
We propose a two-stage hierarchical and explainable feature selection framework by incorporating a feature selection algorithm to improve the performance of dimensionality reduction.
arXiv Detail & Related papers (2024-08-31T23:54:53Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Classification of sleep stages from EEG, EOG and EMG signals by SSNet [2.1915057426589746]
Classification of sleep stages plays an essential role in diagnosing sleep-related diseases including Sleep Disorder Breathing (SDB) disease.
We propose an end-to-end deep learning architecture, named SSNet, which comprises of two deep learning networks based on CNN andLSTM.
Our model achieves the best performance in classifying sleep stages when compared with the state-of-the-art techniques.
arXiv Detail & Related papers (2023-07-03T01:05:24Z) - TSI-GAN: Unsupervised Time Series Anomaly Detection using Convolutional
Cycle-Consistent Generative Adversarial Networks [2.4469484645516837]
Anomaly detection is widely used in network intrusion detection, autonomous driving, medical diagnosis, credit card frauds, etc.
This paper proposes TSI-GAN, an unsupervised anomaly detection model for time-series that can learn complex temporal patterns automatically.
We evaluate TSI-GAN using 250 well-curated and harder-than-usual datasets and compare with 8 state-of-the-art baseline methods.
arXiv Detail & Related papers (2023-03-22T23:24:47Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Predicting Sleeping Quality using Convolutional Neural Networks [6.236890292833385]
We propose a Convolution Neural Network (CNN) architecture that improves the classification performance.
We benchmark the classification performance from different methods, including traditional machine learning methods.
The accuracy, sensitivity, specificity, precision, recall, and F-score are reported and will serve as a baseline to simulate the research.
arXiv Detail & Related papers (2022-04-24T21:48:54Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
We trained ESNs and LSTMs on a Cross-Situationnal Learning (CSL) task.
The results are of three kinds: performance comparison, internal dynamics analyses and visualization of latent space.
arXiv Detail & Related papers (2020-12-03T08:32:01Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
A range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper- parameters of state-of-the-art factored time delay neural networks (TDNNs)
These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training.
Experiments conducted on a 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems.
arXiv Detail & Related papers (2020-07-17T08:32:11Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.