Two-Stage Hierarchical and Explainable Feature Selection Framework for Dimensionality Reduction in Sleep Staging
- URL: http://arxiv.org/abs/2409.00565v1
- Date: Sat, 31 Aug 2024 23:54:53 GMT
- Title: Two-Stage Hierarchical and Explainable Feature Selection Framework for Dimensionality Reduction in Sleep Staging
- Authors: Yangfan Deng, Hamad Albidah, Ahmed Dallal, Jijun Yin, Zhi-Hong Mao,
- Abstract summary: EEG signals play a significant role in sleep research.
Due to the high-dimensional nature of EEG signal data sequences, data visualization and clustering of different sleep stages have been challenges.
We propose a two-stage hierarchical and explainable feature selection framework by incorporating a feature selection algorithm to improve the performance of dimensionality reduction.
- Score: 0.6216545676226375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sleep is crucial for human health, and EEG signals play a significant role in sleep research. Due to the high-dimensional nature of EEG signal data sequences, data visualization and clustering of different sleep stages have been challenges. To address these issues, we propose a two-stage hierarchical and explainable feature selection framework by incorporating a feature selection algorithm to improve the performance of dimensionality reduction. Inspired by topological data analysis, which can analyze the structure of high-dimensional data, we extract topological features from the EEG signals to compensate for the structural information loss that happens in traditional spectro-temporal data analysis. Supported by the topological visualization of the data from different sleep stages and the classification results, the proposed features are proven to be effective supplements to traditional features. Finally, we compare the performances of three dimensionality reduction algorithms: Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). Among them, t-SNE achieved the highest accuracy of 79.8%, but considering the overall performance in terms of computational resources and metrics, UMAP is the optimal choice.
Related papers
- It Takes Two: Accurate Gait Recognition in the Wild via Cross-granularity Alignment [72.75844404617959]
This paper proposes a novel cross-granularity alignment gait recognition method, named XGait.
To achieve this goal, the XGait first contains two branches of backbone encoders to map the silhouette sequences and the parsing sequences into two latent spaces.
Comprehensive experiments on two large-scale gait datasets show XGait with the Rank-1 accuracy of 80.5% on Gait3D and 88.3% CCPG.
arXiv Detail & Related papers (2024-11-16T08:54:27Z) - AttDiCNN: Attentive Dilated Convolutional Neural Network for Automatic Sleep Staging using Visibility Graph and Force-directed Layout [0.0]
We present an automated sleep stage classifier termed the Attentive Dilated Convolutional Neural Network (AttDiCNN)
We employ a force-directed layout based on the visibility graph to capture the most significant information from the EEG signals.
The network consists of three compositors: the Localized Spatial Feature Extraction Network (LSFE), the Spatio-Temporal-Temporal Long Retention Network (S2TLR), and the Global Averaging Attention Network (G2A)
arXiv Detail & Related papers (2024-08-21T06:35:50Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Graph Vertex Embeddings: Distance, Regularization and Community Detection [0.0]
Graph embeddings have emerged as a powerful tool for representing complex network structures in a low-dimensional space.
We present a family of flexible distance functions that faithfully capture the topological distance between different vertices.
We evaluate the effectiveness of our proposed embedding constructions by performing community detection on a host of benchmark datasets.
arXiv Detail & Related papers (2024-04-09T09:03:53Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - An Empirical Evaluation of the t-SNE Algorithm for Data Visualization in
Structural Engineering [2.4493299476776773]
t-Distributed Neighbor Embedding (t-SNE) algorithm is used to reduce the dimensions of an earthquake related data set for visualization purposes.
Synthetic Minority Oversampling Technique (SMOTE) is used to tackle the imbalanced nature of such data set.
We show that using t-SNE on the imbalanced data and SMOTE on the training data set, neural network classifiers have promising results without sacrificing accuracy.
arXiv Detail & Related papers (2021-09-18T01:24:39Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - GA for feature selection of EEG heterogeneous data [0.0]
We propose a genetic algorithm (GA) for feature selection that can be used with a supervised or unsupervised approach.
Our proposal considers three different fitness functions without relying on expert knowledge.
The proposed GA, based on a novel fitness function here presented, outperforms the benchmark when the two different datasets considered are merged together.
arXiv Detail & Related papers (2021-03-12T07:27:42Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.