Attention vs LSTM: Improving Word-level BISINDO Recognition
- URL: http://arxiv.org/abs/2409.01975v2
- Date: Fri, 07 Feb 2025 04:53:48 GMT
- Title: Attention vs LSTM: Improving Word-level BISINDO Recognition
- Authors: Muchammad Daniyal Kautsar, Afra Majida Hariono, Ridwan Akmal,
- Abstract summary: Indonesia ranks fourth globally in the number of deaf cases.<n>Individuals with hearing impairments often find communication challenging, necessitating the use of sign language.<n>This study aims to explore the application of AI in developing models for a simplified sign language translation app and dictionary.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Indonesia ranks fourth globally in the number of deaf cases. Individuals with hearing impairments often find communication challenging, necessitating the use of sign language. However, there are limited public services that offer such inclusivity. On the other hand, advancements in artificial intelligence (AI) present promising solutions to overcome communication barriers faced by the deaf. This study aims to explore the application of AI in developing models for a simplified sign language translation app and dictionary, designed for integration into public service facilities, to facilitate communication for individuals with hearing impairments, thereby enhancing inclusivity in public services. The researchers compared the performance of LSTM and 1D CNN + Transformer (1DCNNTrans) models for sign language recognition. Through rigorous testing and validation, it was found that the LSTM model achieved an accuracy of 94.67%, while the 1DCNNTrans model achieved an accuracy of 96.12%. Model performance evaluation indicated that although the LSTM exhibited lower inference latency, it showed weaknesses in classifying classes with similar keypoints. In contrast, the 1DCNNTrans model demonstrated greater stability and higher F1 scores for classes with varying levels of complexity compared to the LSTM model. Both models showed excellent performance, exceeding 90% validation accuracy and demonstrating rapid classification of 50 sign language gestures.
Related papers
- Indian Sign Language Detection for Real-Time Translation using Machine Learning [0.1747623282473278]
We propose a robust, real-time ISL detection & translation system built upon a Convolutional Neural Network (CNN)<n>Our model is trained on a comprehensive ISL dataset & demonstrates exceptional performance, achieving a classification accuracy of 99.95%.<n>For real-time implementation, the framework integrates MediaPipe for precise hand tracking & motion detection, enabling seamless translation of dynamic gestures.
arXiv Detail & Related papers (2025-07-27T21:15:46Z) - SignBart -- New approach with the skeleton sequence for Isolated Sign language Recognition [0.17578923069457017]
This study presents a new novel SLR approach that overcomes the challenge of independently extracting meaningful information from the x and y coordinates of skeleton sequences.<n>With only 749,888 parameters, the model achieves 96.04% accuracy on the LSA-64 dataset.<n>The model also demonstrates excellent performance and generalization across WLASL and ASL-Citizen datasets.
arXiv Detail & Related papers (2025-06-18T07:07:36Z) - Breaking the Barriers: Video Vision Transformers for Word-Level Sign Language Recognition [41.94295877935867]
Sign language is a fundamental means of communication for the deaf and hard-of-hearing (DHH) community.
barriers persist due to the limited fluency in sign language among the hearing population.
We propose a Video Vision Transformer (ViViT) model for word-level American Sign Language (ASL) recognition.
arXiv Detail & Related papers (2025-04-10T14:27:25Z) - Revolutionizing Communication with Deep Learning and XAI for Enhanced Arabic Sign Language Recognition [0.0]
This study introduces an integrated approach to recognizing Arabic Sign Language (ArSL) using state-of-the-art deep learning models such as MobileNetV3, ResNet50, and EfficientNet-B2.
The proposed system not only sets new benchmarks in recognition accuracy but also emphasizes interpretability, making it suitable for applications in healthcare, education, and inclusive communication technologies.
arXiv Detail & Related papers (2025-01-14T14:49:49Z) - Improving Multilingual ASR in the Wild Using Simple N-best Re-ranking [68.77659513993507]
We present a simple and effective N-best re-ranking approach to improve multilingual ASR accuracy.
Our results show spoken language identification accuracy improvements of 8.7% and 6.1%, respectively, and word error rates which are 3.3% and 2.0% lower on these benchmarks.
arXiv Detail & Related papers (2024-09-27T03:31:32Z) - Self-supervised ASR Models and Features For Dysarthric and Elderly Speech Recognition [71.87998918300806]
This paper explores approaches to integrate domain fine-tuned SSL pre-trained models and their features into TDNN and Conformer ASR systems.
TDNN systems constructed by integrating domain-adapted HuBERT, wav2vec2-conformer or multi-lingual XLSR models consistently outperform standalone fine-tuned SSL pre-trained models.
Consistent improvements in Alzheimer's Disease detection accuracy are also obtained using the DementiaBank Pitt elderly speech recognition outputs.
arXiv Detail & Related papers (2024-07-03T08:33:39Z) - CTC-based Non-autoregressive Speech Translation [51.37920141751813]
We investigate the potential of connectionist temporal classification for non-autoregressive speech translation.
We develop a model consisting of two encoders that are guided by CTC to predict the source and target texts.
Experiments on the MuST-C benchmarks show that our NAST model achieves an average BLEU score of 29.5 with a speed-up of 5.67$times$.
arXiv Detail & Related papers (2023-05-27T03:54:09Z) - Self-supervised Neural Factor Analysis for Disentangling Utterance-level
Speech Representations [30.293081541301746]
Self-supervised learning (SSL) speech models such as wav2vec and HuBERT have demonstrated state-of-the-art performance on automatic speech recognition.
We argue that the problem is caused by the lack of disentangled representations and an utterance-level learning objective.
Our models outperform the current best model, WavLM, on all utterance-level non-semantic tasks on the SUPERB benchmark with only 20% of labeled data.
arXiv Detail & Related papers (2023-05-14T08:26:24Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
We propose a new parameter-efficient learning framework based on neural model reprogramming for cross-lingual speech recognition.
We design different auxiliary neural architectures focusing on learnable pre-trained feature enhancement.
Our methods outperform existing ASR tuning architectures and their extension with self-supervised losses.
arXiv Detail & Related papers (2023-01-19T02:37:56Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
Self-Supervised Learning is crucial for real-world applications, especially in data-hungry domains such as healthcare and self-driving cars.
In this paper, we explore variants of SSL methods, including Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision, as well as BERT and GPT for language tasks.
Our goal is to create a benchmark with outputs from experiments, providing a starting point for new SSL methods in Reliable Machine Learning.
arXiv Detail & Related papers (2022-12-23T15:46:23Z) - ConNER: Consistency Training for Cross-lingual Named Entity Recognition [96.84391089120847]
Cross-lingual named entity recognition suffers from data scarcity in the target languages.
We propose ConNER as a novel consistency training framework for cross-lingual NER.
arXiv Detail & Related papers (2022-11-17T07:57:54Z) - Is Attention always needed? A Case Study on Language Identification from
Speech [1.162918464251504]
The present study introduces convolutional recurrent neural network (CRNN) based LID.
CRNN based LID is designed to operate on the Mel-frequency Cepstral Coefficient (MFCC) characteristics of audio samples.
The LID model exhibits high-performance levels ranging from 97% to 100% for languages that are linguistically similar.
arXiv Detail & Related papers (2021-10-05T16:38:57Z) - Evaluating the Robustness of Neural Language Models to Input
Perturbations [7.064032374579076]
In this study, we design and implement various types of character-level and word-level perturbation methods to simulate noisy input texts.
We investigate the ability of high-performance language models such as BERT, XLNet, RoBERTa, and ELMo in handling different types of input perturbations.
The results suggest that language models are sensitive to input perturbations and their performance can decrease even when small changes are introduced.
arXiv Detail & Related papers (2021-08-27T12:31:17Z) - Neural Models for Offensive Language Detection [0.0]
Offensive language detection is an ever-growing natural language processing (NLP) application.
We believe contributing to improving and comparing different machine learning models to fight such harmful contents is an important and challenging goal for this thesis.
arXiv Detail & Related papers (2021-05-30T13:02:45Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications.
In other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations.
We propose a novel framework to test the robustness of current state-of-the-art models.
arXiv Detail & Related papers (2021-03-27T19:58:06Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z) - Rnn-transducer with language bias for end-to-end Mandarin-English
code-switching speech recognition [58.105818353866354]
We propose an improved recurrent neural network transducer (RNN-T) model with language bias to alleviate the problem.
We use the language identities to bias the model to predict the CS points.
This promotes the model to learn the language identity information directly from transcription, and no additional LID model is needed.
arXiv Detail & Related papers (2020-02-19T12:01:33Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.