論文の概要: FedMinds: Privacy-Preserving Personalized Brain Visual Decoding
- arxiv url: http://arxiv.org/abs/2409.02044v1
- Date: Tue, 3 Sep 2024 16:46:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 00:21:46.629077
- Title: FedMinds: Privacy-Preserving Personalized Brain Visual Decoding
- Title(参考訳): FedMinds:プライバシ保護によるパーソナライズされた脳のビジュアルデコーディング
- Authors: Guangyin Bao, Duoqian Miao,
- Abstract要約: モデルトレーニング中の個人のプライバシ保護にフェデレーション学習を利用するFedMindsという新しいフレームワークを導入する。
提案フレームワークの性能を評価するため,信頼性の高いNSDデータセットの実験を行った。
- 参考スコア(独自算出の注目度): 8.921243665494098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploring the mysteries of the human brain is a long-term research topic in neuroscience. With the help of deep learning, decoding visual information from human brain activity fMRI has achieved promising performance. However, these decoding models require centralized storage of fMRI data to conduct training, leading to potential privacy security issues. In this paper, we focus on privacy preservation in multi-individual brain visual decoding. To this end, we introduce a novel framework called FedMinds, which utilizes federated learning to protect individuals' privacy during model training. In addition, we deploy individual adapters for each subject, thus allowing personalized visual decoding. We conduct experiments on the authoritative NSD datasets to evaluate the performance of the proposed framework. The results demonstrate that our framework achieves high-precision visual decoding along with privacy protection.
- Abstract(参考訳): 人間の脳の謎を探求することは神経科学における長期的な研究課題である。
ディープラーニングの助けを借りて、人間の脳活動から視覚情報をデコードするfMRIは、有望なパフォーマンスを達成した。
しかしながら、これらの復号化モデルは、トレーニングを行うためにfMRIデータの集中ストレージを必要とするため、潜在的なプライバシセキュリティの問題が発生する可能性がある。
本稿では,多次元脳視覚復号法におけるプライバシ保護に着目した。
この目的のために,FedMindsという新しいフレームワークを導入する。フェデレーション学習を利用して,モデルのトレーニング中に個人のプライバシを保護する。
さらに、各対象に対して個別のアダプタを配置し、パーソナライズされた視覚的デコードを可能にする。
提案フレームワークの性能を評価するため,信頼性の高いNSDデータセットの実験を行った。
その結果,我々のフレームワークは,プライバシ保護とともに高精度な視覚復号化を実現していることがわかった。
関連論文リスト
- MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Aligning brain functions boosts the decoding of visual semantics in
novel subjects [3.226564454654026]
脳の反応をビデオや静止画像に合わせることで脳の復号化を促進することを提案する。
提案手法はオブジェクト外デコード性能を最大75%向上させる。
また、テスト対象者に対して100分未満のデータが得られる場合、古典的な単一オブジェクトアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T15:55:20Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey) [9.14580723964253]
AIモデルを使って脳についての洞察を得ることができるか?
脳記録に関する深層学習モデルの情報はどのようになっているか?
復号化モデルは、fMRIが与えられた刺激を再構成する逆問題を解決する。
近年,自然言語処理,コンピュータビジョン,音声に対するディープラーニングモデルの有効性に触発されて,ニューラルコーディングや復号化モデルが提案されている。
論文 参考訳(メタデータ) (2023-07-17T06:54:36Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
医療におけるディープラーニングアプリケーションの普及は、さまざまな機関にデータ収集を求める。
プライバシー保護メカニズムは、データが自然に敏感である医療画像解析において最重要である。
本研究は,プライバシ保護技術である差分プライバシを,医用画像分類のための統合学習フレームワークに統合することの必要性に対処する。
論文 参考訳(メタデータ) (2023-06-30T16:48:58Z) - DeepBrainPrint: A Novel Contrastive Framework for Brain MRI
Re-Identification [2.5855676778881334]
我々はDeepBrainPrintというAIベースのフレームワークを提案し、同じ患者の脳MRIスキャンを検索する。
当社のフレームワークは,3つの主要なイノベーションを伴う,半自己指導型のコントラスト型ディープラーニングアプローチです。
DeepBrainPrintをアルツハイマー病脳画像イニシアチブ(ADNI)のT1強調脳MRIの大規模なデータセットでテストした。
論文 参考訳(メタデータ) (2023-02-25T11:03:16Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
機能的脳活動から直接人間の視覚的注意を特徴付ける脳誘発対人視覚注意ネットワーク(BI-AVAN)を提案する。
本モデルは,人間の脳が監督されていない方法で焦点を絞った映画フレーム内の視覚的物体を識別・発見するために,注意関連・無視対象間の偏りのある競合過程を模倣する。
論文 参考訳(メタデータ) (2022-10-27T22:20:36Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - SoK: Privacy-preserving Deep Learning with Homomorphic Encryption [2.9069679115858755]
ホモモルフィック暗号化(HE)は、その内容を明らかにすることなく暗号化データ上で実行される。
プライバシ保護のために、ニューラルネットワークとHEを組み合わせたアプローチを詳細に検討します。
計算オーバーヘッドやユーザビリティ,暗号化スキームによる制限といった,HEベースのプライバシ保護の深層学習には,数多くの課題がある。
論文 参考訳(メタデータ) (2021-12-23T22:03:27Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
精神状態は、先進医療に共通する国でも診断されていない。
人間の行動を監視するための有望なデータソースのひとつは、日々のスマートフォンの利用だ。
本研究では,自殺行動のリスクが高い青少年集団の移動行動のデータセットを用いて,日常生活の行動マーカーについて検討した。
論文 参考訳(メタデータ) (2021-06-24T17:46:03Z) - What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions [50.435861435121915]
視覚のみの表現よりも優れた表現を学べるかどうかを調べるために,人間のインタラクションとアテンション・キューを用いている。
実験の結果,我々の「音楽監督型」表現は,視覚のみの最先端手法であるMoCoよりも優れていた。
論文 参考訳(メタデータ) (2020-10-16T17:46:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。