Robust Clustering on High-Dimensional Data with Stochastic Quantization
- URL: http://arxiv.org/abs/2409.02066v3
- Date: Fri, 11 Oct 2024 14:21:22 GMT
- Title: Robust Clustering on High-Dimensional Data with Stochastic Quantization
- Authors: Anton Kozyriev, Vladimir Norkin,
- Abstract summary: This paper addresses the limitations of conventional vector quantization algorithms.
It investigates the Quantization (SQ) as an alternative for high-dimensionality computation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses the limitations of conventional vector quantization algorithms, particularly K-Means and its variant K-Means++, and investigates the Stochastic Quantization (SQ) algorithm as a scalable alternative for high-dimensional unsupervised and semi-supervised learning tasks. Traditional clustering algorithms often suffer from inefficient memory utilization during computation, necessitating the loading of all data samples into memory, which becomes impractical for large-scale datasets. While variants such as Mini-Batch K-Means partially mitigate this issue by reducing memory usage, they lack robust theoretical convergence guarantees due to the non-convex nature of clustering problems. In contrast, the Stochastic Quantization algorithm provides strong theoretical convergence guarantees, making it a robust alternative for clustering tasks. We demonstrate the computational efficiency and rapid convergence of the algorithm on an image classification problem with partially labeled data, comparing model accuracy across various ratios of labeled to unlabeled data. To address the challenge of high dimensionality, we employ a Triplet Network to encode images into low-dimensional representations in a latent space, which serve as a basis for comparing the efficiency of both the Stochastic Quantization algorithm and traditional quantization algorithms. Furthermore, we enhance the algorithm's convergence speed by introducing modifications with an adaptive learning rate.
Related papers
- Randomized Dimension Reduction with Statistical Guarantees [0.27195102129095]
This thesis explores some of such algorithms for fast execution and efficient data utilization.
We focus on learning algorithms with various incorporations of data augmentation that improve generalization and distributional provably.
Specifically, Chapter 4 presents a sample complexity analysis for data augmentation consistency regularization.
arXiv Detail & Related papers (2023-10-03T02:01:39Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Accelerated Doubly Stochastic Gradient Algorithm for Large-scale
Empirical Risk Minimization [23.271890743506514]
We propose a doubly algorithm with a novel accelerating multimomentum technique to solve large scale empirical risk minimization problem for learning tasks.
While enjoying a provably superior convergence rate, in each iteration, such algorithm only accesses a mini batch of samples and updates a small block of variable coordinates.
arXiv Detail & Related papers (2023-04-23T14:21:29Z) - Regularization and Optimization in Model-Based Clustering [4.096453902709292]
k-means algorithm variants essentially fit a mixture of identical spherical Gaussians to data that vastly deviates from such a distribution.
We develop more effective optimization algorithms for general GMMs, and we combine these algorithms with regularization strategies that avoid overfitting.
These results shed new light on the current status quo between GMM and k-means methods and suggest the more frequent use of general GMMs for data exploration.
arXiv Detail & Related papers (2023-02-05T18:22:29Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
Cross-modal hashing is a successful method to solve large-scale multimedia retrieval issue.
We propose a novel Asymmetric Scalable Cross-Modal Hashing (ASCMH) to address these issues.
Our ASCMH outperforms the state-of-the-art cross-modal hashing methods in terms of accuracy and efficiency.
arXiv Detail & Related papers (2022-07-26T04:38:47Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
We provide quantum procedures that speed-up the solution of eigenproblems for data representation in machine learning.
The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix's size, for principal component analysis, correspondence analysis, and latent semantic analysis.
Results show that the run-time parameters that do not depend on the input's size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.
arXiv Detail & Related papers (2021-04-19T00:41:43Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Progressive Batching for Efficient Non-linear Least Squares [31.082253632197023]
Most improvements of the basic Gauss-Newton tackle convergence guarantees or leverage the sparsity of the underlying problem structure for computational speedup.
Our work borrows ideas from both machine learning and statistics, and we present an approach for non-linear least-squares that guarantees convergence while at the same time significantly reduces the required amount of computation.
arXiv Detail & Related papers (2020-10-21T13:00:04Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Asymmetric Correlation Quantization Hashing for Cross-modal Retrieval [11.988383965639954]
Cross-modal hashing methods have attracted extensive attention in similarity retrieval across the heterogeneous modalities.
ACQH is a novel Asymmetric Correlation Quantization Hashing (ACQH) method proposed in this paper.
It learns the projection matrixs of heterogeneous modalities data points for transforming query into a low-dimensional real-valued vector in latent semantic space.
It constructs the stacked compositional quantization embedding in a coarse-to-fine manner for indicating database points by a series of learnt real-valued codeword.
arXiv Detail & Related papers (2020-01-14T04:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.