論文の概要: Hazardous Asteroids Classification
- arxiv url: http://arxiv.org/abs/2409.02150v1
- Date: Tue, 3 Sep 2024 10:37:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:39:27.045944
- Title: Hazardous Asteroids Classification
- Title(参考訳): Hazardous Asteroids 分類
- Authors: Thai Duy Quy, Alvin Buana, Josh Lee, Rakha Asyrofi,
- Abstract要約: このプロジェクトの目的は、マシンラーニングとディープラーニングを使用して、有害な小惑星を正確に分類することである。
5つの機械学習アルゴリズムと5つのディープラーニングモデルからなる計10の手法が訓練され、その問題を解決する適切なモデルを見つけるために評価される。
- 参考スコア(独自算出の注目度): 0.30977113730786693
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hazardous asteroid has been one of the concerns for humankind as fallen asteroid on earth could cost a huge impact on the society.Monitoring these objects could help predict future impact events, but such efforts are hindered by the large numbers of objects that pass in the Earth's vicinity. The aim of this project is to use machine learning and deep learning to accurately classify hazardous asteroids. A total of ten methods which consist of five machine learning algorithms and five deep learning models are trained and evaluated to find the suitable model that solves the issue. We experiment on two datasets, one from Kaggle and one we extracted from a web service called NeoWS which is a RESTful web service from NASA that provides information about near earth asteroids, it updates every day. In overall, the model is tested on two datasets with different features to find the most accurate model to perform the classification.
- Abstract(参考訳): 地球に落下する小惑星が社会に大きな影響を与える可能性があるため、人類にとって有害な小惑星が懸念されている。これらの天体の観測は将来の衝突の予測に役立つ可能性があるが、地球近傍を通り抜ける大量の天体によって妨げられている。
このプロジェクトの目的は、マシンラーニングとディープラーニングを使用して、有害な小惑星を正確に分類することである。
5つの機械学習アルゴリズムと5つのディープラーニングモデルからなる計10の手法が訓練され、その問題を解決する適切なモデルを見つけるために評価される。
私たちはKaggleとNeoWSという、地球近傍小惑星に関する情報を提供するNASAのRESTful Webサービスから抽出した2つのデータセットを実験し、毎日更新しています。
全体として、モデルは異なる特徴を持つ2つのデータセットでテストされ、分類を行うための最も正確なモデルを見つける。
関連論文リスト
- A machine learning and feature engineering approach for the prediction
of the uncontrolled re-entry of space objects [1.0205541448656992]
低地球軌道(LEO)における未制御物体の再突入予測のための深層学習モデルの開発について述べる。
このモデルはSequence-to-Sequenceアーキテクチャの修正版に基づいており、400体以上のTLE(Two-Line Element)データから得られた平均高度プロファイルに基づいて訓練されている。
この研究の斬新さは、平均高度とともに、ドラッグライクな係数(B*)、平均太陽指数、物体の面積と質量比の3つの新しい入力特徴を含むディープラーニングモデルの導入である。
論文 参考訳(メタデータ) (2023-03-17T13:53:59Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - Towards Asteroid Detection in Microlensing Surveys with Deep Learning [0.0]
小惑星は、ほとんどの天文学的な調査では確認不可能な部分である。
本稿ではMOAプロジェクトによって収集されたマイクロレンズデータから小惑星の回収と発見のための新しい深層学習ソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-04T03:16:23Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - Optimization of Artificial Neural Networks models applied to the
identification of images of asteroids' resonant arguments [0.6449761153631166]
近年の研究では、畳み込みニューラルネットワーク(CNN)モデルを使用して、そのようなタスクを自動的に実行している。
このようなモデルの結果を、VGG、Inception、ResNetなど、最も先進的で一般公開されているCNNアーキテクチャの結果と比較する。
VGGモデルは、正規化と非正規化により、大規模なデータセットのラベルを予測する最も効率的な方法であることが判明した。
論文 参考訳(メタデータ) (2022-07-28T15:46:39Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Asteroid Flyby Cycler Trajectory Design Using Deep Neural Networks [4.420321822469076]
本稿では,深部ニューラルネットワークによって構築された代理モデルを用いて,小惑星フライバイサイクル軌道を設計する新しい手法を提案する。
カルシュ・クーン・タッカー条件を満たす擬似小惑星を導入することにより,効率的なデータベース生成戦略を提案する。
論文 参考訳(メタデータ) (2021-11-23T13:31:05Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - A Two-Stage Deep Learning Detection Classifier for the ATLAS Asteroid
Survey [0.0]
太陽系の天体を光学的・電子的アーティファクトから分離する2段階ニューラルネットワークモデルを提案する。
このモデルは、ATLASデータ中の実際の小惑星の99.6%の精度で0.4%の偽陰率を示す。
論文 参考訳(メタデータ) (2021-01-22T01:35:08Z) - Object Rearrangement Using Learned Implicit Collision Functions [61.90305371998561]
本研究では,シーン内の6DOFオブジェクトのポーズに対して,シーンとクエリ対象点の雲を受け付け,衝突を予測できる学習的衝突モデルを提案する。
我々は,テーブルトップ再構成タスクにおけるモデル予測経路積分(MPPI)ポリシーの一部として,学習された衝突モデルを活用する。
学習モデルは従来のパイプラインよりも優れており、シミュレーションされた衝突クエリのデータセット上では9.8%の精度で学習精度が向上している。
論文 参考訳(メタデータ) (2020-11-21T05:36:06Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
BEE(Batch Exploration with Examples)は、重要状態の画像の少ない数の人間がガイドする状態空間の関連領域を探索する。
BEEは、シミュレーションと本物のフランカロボットの両方で、視覚ベースの操作に挑戦することができる。
論文 参考訳(メタデータ) (2020-10-22T17:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。