Effective Distance of Higher Dimensional HGPs and Weight-Reduced Quantum LDPC Codes
- URL: http://arxiv.org/abs/2409.02193v3
- Date: Tue, 17 Sep 2024 15:35:40 GMT
- Title: Effective Distance of Higher Dimensional HGPs and Weight-Reduced Quantum LDPC Codes
- Authors: Shi Jie Samuel Tan, Lev Stambler,
- Abstract summary: We show that there exists single-ancilla syndrome extraction circuits that largely preserve the effective distance of the weight-reduced qLDPC codes.
As a corollary, our result shows that higher-dimensional hypergraph product codes have no troublesome hook errors when using any single-ancilla syndrome extraction circuit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction plays a prominent role in the realization of quantum computation, and quantum low-density parity-check (qLDPC) codes are believed to be practically useful stabilizer codes. While qLDPC codes are defined to have constant weight parity-checks, the weight of these parity checks could be large constants that make implementing these codes challenging. Large constants can also result in long syndrome extraction times and bad error propagation that can impact error correction performance. Hastings recently introduced weight reduction techniques for qLDPC codes that reduce the weight of the parity checks as well as the maximum number of checks that acts on any data qubit. However, the fault tolerance of these techniques remains an open question. In this paper, we analyze the effective distance of the weight-reduced code when single-ancilla syndrome extraction circuits are considered for error correction. We prove that there exists single-ancilla syndrome extraction circuits that largely preserve the effective distance of the weight-reduced qLDPC codes. In addition, we also show that the distance balancing technique introduced by Evra et al. preserves effective distance. As a corollary, our result shows that higher-dimensional hypergraph product (HGP) codes, also known as homological product codes corresponding to the product of 1-complexes, have no troublesome hook errors when using any single-ancilla syndrome extraction circuit.
Related papers
- Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Improved Noisy Syndrome Decoding of Quantum LDPC Codes with Sliding
Window [0.0]
We study sliding-window decoding, which corrects errors from previous syndrome measurement rounds while leaving the most recent errors for future correction.
Remarkably, we find that this improvement may not cost a larger decoding complexity.
arXiv Detail & Related papers (2023-11-06T17:56:49Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
arXiv Detail & Related papers (2023-06-21T18:00:01Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - An efficient decoder for a linear distance quantum LDPC code [0.1657441317977376]
We present a linear time decoder for the recent quantumally good qLDPC codes.
Our decoder is an iterative algorithm which searches for corrections within constant-sized regions.
arXiv Detail & Related papers (2022-06-14T02:17:09Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Trapping Sets of Quantum LDPC Codes [9.482750811734565]
We identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used.
We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders.
arXiv Detail & Related papers (2020-12-30T19:35:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.