論文の概要: QID$^2$: An Image-Conditioned Diffusion Model for Q-space Up-sampling of DWI Data
- arxiv url: http://arxiv.org/abs/2409.02309v1
- Date: Tue, 3 Sep 2024 21:39:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:14:11.184119
- Title: QID$^2$: An Image-Conditioned Diffusion Model for Q-space Up-sampling of DWI Data
- Title(参考訳): QID$^2$:DWIデータのQ空間アップサンプリングのための画像合成拡散モデル
- Authors: Zijian Chen, Jueqi Wang, Archana Venkataraman,
- Abstract要約: 低角分解能画像から高角分解能拡散強調画像(DWI)を推定するための画像条件拡散モデルを提案する。
我々のモデルはQID$2$と呼ばれ、低角分解能DWIデータの集合を入力として、この情報を用いて目標勾配方向に関連するDWIデータを推定する。
- 参考スコア(独自算出の注目度): 4.366261102653273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID$^2$, takes as input a set of low angular resolution DWI data and uses this information to estimate the DWI data associated with a target gradient direction. We leverage a U-Net architecture with cross-attention to preserve the positional information of the reference images, further guiding the target image generation. We train and evaluate QID$^2$ on single-shell DWI samples curated from the Human Connectome Project (HCP) dataset. Specifically, we sub-sample the HCP gradient directions to produce low angular resolution DWI data and train QID$^2$ to reconstruct the missing high angular resolution samples. We compare QID$^2$ with two state-of-the-art GAN models. Our results demonstrate that QID$^2$ not only achieves higher-quality generated images, but it consistently outperforms the GAN models in downstream tensor estimation across multiple metrics. Taken together, this study highlights the potential of diffusion models, and QID$^2$ in particular, for q-space up-sampling, thus offering a promising toolkit for clinical and research applications.
- Abstract(参考訳): 低角分解能画像から高角分解能拡散強調画像(DWI)を推定するための画像条件拡散モデルを提案する。
我々のモデルはQID$^2$と呼ばれ、低角分解能DWIデータを入力として、この情報を用いて目標勾配方向に関連するDWIデータを推定する。
我々は、参照画像の位置情報を保存し、さらにターゲット画像生成を導くために、クロスアテンションを持つU-Netアーキテクチャを利用する。
我々は,Human Connectome Project (HCP)データセットから得られたシングルシェルDWIサンプルに対して,QID$^2$をトレーニングし,評価する。
具体的には、HCP勾配方向をサブサンプリングし、低角分解能DWIデータを生成し、QID$^2$をトレーニングし、欠落した高角分解能サンプルを再構成する。
QID$^2$と最先端の2つのGANモデルを比較した。
以上の結果から、QID$^2$は高品質な生成画像を実現するだけでなく、複数のメトリクスにわたって下流テンソル推定において、GANモデルよりも一貫して優れていることが示された。
本研究は,Q-space up-sampling における拡散モデルの可能性,特に QID$^2$ に着目し,臨床および研究応用に有望なツールキットを提供する。
関連論文リスト
- Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Single-View Height Estimation with Conditional Diffusion Probabilistic
Models [1.8782750537161614]
我々は、マルコフ連鎖として光学画像とDSM画像の連成分布を学習するために、生成拡散モデルを訓練する。
これは、音源画像に条件付けされたままの復調スコアマッチング目標を最小化して、現実的な高解像度3次元表面を生成する。
本稿では,1枚のリモートセンシング画像から高度推定を行う条件付き拡散確率モデル(DDPM)を実験する。
論文 参考訳(メタデータ) (2023-04-26T00:37:05Z) - Pyramid Grafting Network for One-Stage High Resolution Saliency
Detection [29.013012579688347]
我々は、異なる解像度画像から特徴を独立して抽出する、Praamid Grafting Network (PGNet) と呼ばれるワンステージフレームワークを提案する。
CNNブランチが壊れた詳細情報をよりホモロジーに組み合わせられるように、アテンションベースのクロスモデルグラフティングモジュール (CMGM) が提案されている。
我々は,4K-8K解像度で5,920個の画像を含む超高分解能塩度検出データセットUHRSDを新たに提供した。
論文 参考訳(メタデータ) (2022-04-11T12:22:21Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
本研究は,CFDを用いた3次元フローフィールドの計算から,建物のフットプリント上の2次元画像から画像への変換に基づく問題まで,歩行者の高さレベルでのフローフィールドの予測に至るまでの課題を言い換える。
本稿では,画像から画像への変換タスクの最先端を表現したPix2PixやCycleGANなど,GAN(Generative Adversarial Network)の利用について検討する。
論文 参考訳(メタデータ) (2021-12-15T19:37:11Z) - Y-GAN: Learning Dual Data Representations for Efficient Anomaly
Detection [0.0]
本稿では,Y-GANと呼ばれる新しい再構成モデルを提案する。
モデルはY字型のオートエンコーダで構成され、2つの別々の潜在空間の画像を表現している。
論文 参考訳(メタデータ) (2021-09-28T20:17:04Z) - Spatial-Separated Curve Rendering Network for Efficient and
High-Resolution Image Harmonization [59.19214040221055]
本稿では,空間分離型曲線描画ネットワーク(S$2$CRNet)を提案する。
提案手法は従来の手法と比較して90%以上のパラメータを減少させる。
提案手法は,既存の手法よりも10ドル以上高速な高解像度画像をリアルタイムにスムーズに処理することができる。
論文 参考訳(メタデータ) (2021-09-13T07:20:16Z) - Cascaded Diffusion Models for High Fidelity Image Generation [53.57766722279425]
本研究では,画像ネット生成の課題に対して,カスケード拡散モデルを用いて高忠実度画像を生成可能であることを示す。
カスケード拡散モデルは、解像度が増大する画像を生成する複数の拡散モデルのパイプラインを含む。
その結果,カスケードパイプラインのサンプル品質は,条件付拡張に大きく依存していることがわかった。
論文 参考訳(メタデータ) (2021-05-30T17:14:52Z) - On the Difference Between the Information Bottleneck and the Deep
Information Bottleneck [81.89141311906552]
本稿では,Deep Variational Information Bottleneckとその導出に必要な仮定について再考する。
後者のマルコフ連鎖のみを満たすべき$I(T;Y)$に対して下界を最適化することで、この制限を回避する方法を示す。
論文 参考訳(メタデータ) (2019-12-31T18:31:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。