論文の概要: Generative Principal Component Regression via Variational Inference
- arxiv url: http://arxiv.org/abs/2409.02327v1
- Date: Tue, 3 Sep 2024 22:38:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:51:59.809870
- Title: Generative Principal Component Regression via Variational Inference
- Title(参考訳): 変分推論による生成主成分回帰
- Authors: Austin Talbot, Corey J Keller, David E Carlson, Alex V Kotlar,
- Abstract要約: 適切な操作を設計するための1つのアプローチは、予測モデルの重要な特徴をターゲットとすることである。
我々は,そのような情報を潜在空間で表現する,教師付き変分オートエンコーダ(SVAE)に基づく新しい目的を開発する。
シミュレーションでは,gPCRは通常のPCRやSVAEと比較して,操作時のターゲット選択を劇的に改善することを示した。
- 参考スコア(独自算出の注目度): 2.4415762506639944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to manipulate complex systems, such as the brain, to modify specific outcomes has far-reaching implications, particularly in the treatment of psychiatric disorders. One approach to designing appropriate manipulations is to target key features of predictive models. While generative latent variable models, such as probabilistic principal component analysis (PPCA), is a powerful tool for identifying targets, they struggle incorporating information relevant to low-variance outcomes into the latent space. When stimulation targets are designed on the latent space in such a scenario, the intervention can be suboptimal with minimal efficacy. To address this problem, we develop a novel objective based on supervised variational autoencoders (SVAEs) that enforces such information is represented in the latent space. The novel objective can be used with linear models, such as PPCA, which we refer to as generative principal component regression (gPCR). We show in simulations that gPCR dramatically improves target selection in manipulation as compared to standard PCR and SVAEs. As part of these simulations, we develop a metric for detecting when relevant information is not properly incorporated into the loadings. We then show in two neural datasets related to stress and social behavior in which gPCR dramatically outperforms PCR in predictive performance and that SVAEs exhibit low incorporation of relevant information into the loadings. Overall, this work suggests that our method significantly improves target selection for manipulation using latent variable models over competitor inference schemes.
- Abstract(参考訳): 脳などの複雑なシステムを操作して特定の結果を修正する能力は、特に精神疾患の治療において大きな意味を持つ。
適切な操作を設計するための1つのアプローチは、予測モデルの重要な特徴をターゲットとすることである。
確率的主成分分析(PPCA)のような生成的潜伏変数モデルは、目標を特定する強力なツールであるが、低分散結果に関連する情報を潜伏空間に組み込むのに苦労している。
このようなシナリオにおいて、刺激対象が潜在空間上に設計される場合、介入は最小限の有効性で最適である。
この問題に対処するため,教師付き変分オートエンコーダ(SVAE)をベースとして,そのような情報を潜時空間で表現する新たな目的を開発する。
PPCAのような線形モデルでは,生成主成分回帰(gPCR)と呼ばれる新しい目的が利用できる。
シミュレーションでは,gPCRは通常のPCRやSVAEと比較して,操作時のターゲット選択を劇的に改善することを示した。
これらのシミュレーションの一環として,負荷に関連情報が適切に組み込まれていないことを検知する指標を開発した。
次に、ストレスと社会的行動に関連する2つのニューラルネットワークにおいて、gPCRが予測性能でPCRを劇的に上回り、SVAEがローディングに関連情報が組み込まれていないことを示す。
本研究は,提案手法により,競合推定方式よりも潜在変数モデルを用いた操作対象の選択が大幅に改善されることを示唆する。
関連論文リスト
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Variable Importance in High-Dimensional Settings Requires Grouping [19.095605415846187]
Conditional Permutation Importance (CPI)は、そのような場合のPIの制限をバイパスする。
クラスタリングまたはいくつかの事前知識を介して統計的に変数をグループ化すると、ある程度のパワーバックが得られる。
重み付けにより拡張された手法は,高相関なグループであっても,型Iエラーを制御可能であることを示す。
論文 参考訳(メタデータ) (2023-12-18T00:21:47Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - AugmentedPCA: A Python Package of Supervised and Adversarial Linear
Factor Models [0.2148535041822524]
本稿では,主成分分析の目的を,主成分分析の目的を主成分分析の目的とする手法を提案する。
我々は、これらのメソッドをオープンソースのPythonパッケージであるAugmentedPCAに実装し、優れた現実世界のベースラインを作成できる。
オープンソースのRNA-seq癌遺伝子発現データセット上で,これらの因子モデルの有用性を実証する。
論文 参考訳(メタデータ) (2022-01-07T17:08:59Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Improving Sample and Feature Selection with Principal Covariates
Regression [0.0]
この目的に応用された2つの人気のあるサブセレクション方式に焦点をあてる。
対象情報を組み込むことで,教師付きタスクにおいてより優れた選択が可能となることを示す。
また、単純な教師付き学習モデルの側面を組み込むことで、より複雑なモデルの精度を向上させることも示します。
論文 参考訳(メタデータ) (2020-12-22T18:52:06Z) - AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures based on
Artificial Intelligence algorithms and multi-sources Data Processing [0.0]
本報告では、新型コロナウイルスのパンデミックなどの緊急事態対策と対策のために、定量的かつ多スケールな要素をベースとした、対象とする対策の実施を支援するための新しいツールについて述べる。
このツールは集中型システム(Webアプリケーション)であり、単一のマルチユーザプラットフォームであり、異種データの処理に人工知能(AI)アルゴリズムに依存しており、出力レベルのリスクを生み出すことができる。
このモデルには、まず選択された入力間の相関を学習するために訓練される特定のニューラルネットワークが含まれている。
論文 参考訳(メタデータ) (2020-11-07T17:50:14Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。