Generative Principal Component Regression via Variational Inference
- URL: http://arxiv.org/abs/2409.02327v1
- Date: Tue, 3 Sep 2024 22:38:55 GMT
- Title: Generative Principal Component Regression via Variational Inference
- Authors: Austin Talbot, Corey J Keller, David E Carlson, Alex V Kotlar,
- Abstract summary: One approach to designing appropriate manipulations is to target key features of predictive models.
We develop a novel objective based on supervised variational autoencoders (SVAEs) that enforces such information is represented in the latent space.
We show in simulations that gPCR dramatically improves target selection in manipulation as compared to standard PCR and SVAEs.
- Score: 2.4415762506639944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to manipulate complex systems, such as the brain, to modify specific outcomes has far-reaching implications, particularly in the treatment of psychiatric disorders. One approach to designing appropriate manipulations is to target key features of predictive models. While generative latent variable models, such as probabilistic principal component analysis (PPCA), is a powerful tool for identifying targets, they struggle incorporating information relevant to low-variance outcomes into the latent space. When stimulation targets are designed on the latent space in such a scenario, the intervention can be suboptimal with minimal efficacy. To address this problem, we develop a novel objective based on supervised variational autoencoders (SVAEs) that enforces such information is represented in the latent space. The novel objective can be used with linear models, such as PPCA, which we refer to as generative principal component regression (gPCR). We show in simulations that gPCR dramatically improves target selection in manipulation as compared to standard PCR and SVAEs. As part of these simulations, we develop a metric for detecting when relevant information is not properly incorporated into the loadings. We then show in two neural datasets related to stress and social behavior in which gPCR dramatically outperforms PCR in predictive performance and that SVAEs exhibit low incorporation of relevant information into the loadings. Overall, this work suggests that our method significantly improves target selection for manipulation using latent variable models over competitor inference schemes.
Related papers
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Variable Importance in High-Dimensional Settings Requires Grouping [19.095605415846187]
Conditional Permutation Importance (CPI) bypasses PI's limitations in such cases.
Grouping variables statistically via clustering or some prior knowledge gains some power back.
We show that the approach extended with stacking controls the type-I error even with highly-correlated groups.
arXiv Detail & Related papers (2023-12-18T00:21:47Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - AugmentedPCA: A Python Package of Supervised and Adversarial Linear
Factor Models [0.2148535041822524]
We present methods that augment the principal component analysis objective with either a supervised or adversarial objective.
We implement these methods in an open-source Python package, AugmentedPCA, that can produce excellent real-world baselines.
We demonstrate the utility of these factor models on an open-source, RNA-seq cancer gene expression dataset.
arXiv Detail & Related papers (2022-01-07T17:08:59Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Improving Sample and Feature Selection with Principal Covariates
Regression [0.0]
We focus on two popular sub-selection schemes which have been applied to this end.
We show that incorporating target information provides selections that perform better in supervised tasks.
We also show that incorporating aspects of simple supervised learning models can improve the accuracy of more complex models.
arXiv Detail & Related papers (2020-12-22T18:52:06Z) - AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures based on
Artificial Intelligence algorithms and multi-sources Data Processing [0.0]
This paper describes a new tool to support institutions in the implementation of targeted countermeasures, based on quantitative and multi-scale elements, for the fight and prevention of emergencies, such as the current COVID-19 pandemic.
The tool is a centralized system (web application), single multi-user platform, which relies on Artificial Intelligence (AI) algorithms for the processing of heterogeneous data, and which can produce an output level of risk.
The model includes a specific neural network which will be first trained to learn the correlation between selected inputs, related to the case of interest: environmental variables (chemical-physical, such as meteorological), human activity
arXiv Detail & Related papers (2020-11-07T17:50:14Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.