AugmentedPCA: A Python Package of Supervised and Adversarial Linear
Factor Models
- URL: http://arxiv.org/abs/2201.02547v1
- Date: Fri, 7 Jan 2022 17:08:59 GMT
- Title: AugmentedPCA: A Python Package of Supervised and Adversarial Linear
Factor Models
- Authors: William E. Carson IV, Austin Talbot, David Carlson
- Abstract summary: We present methods that augment the principal component analysis objective with either a supervised or adversarial objective.
We implement these methods in an open-source Python package, AugmentedPCA, that can produce excellent real-world baselines.
We demonstrate the utility of these factor models on an open-source, RNA-seq cancer gene expression dataset.
- Score: 0.2148535041822524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep autoencoders are often extended with a supervised or adversarial loss to
learn latent representations with desirable properties, such as greater
predictivity of labels and outcomes or fairness with respects to a sensitive
variable. Despite the ubiquity of supervised and adversarial deep latent factor
models, these methods should demonstrate improvement over simpler linear
approaches to be preferred in practice. This necessitates a reproducible linear
analog that still adheres to an augmenting supervised or adversarial objective.
We address this methodological gap by presenting methods that augment the
principal component analysis (PCA) objective with either a supervised or an
adversarial objective and provide analytic and reproducible solutions. We
implement these methods in an open-source Python package, AugmentedPCA, that
can produce excellent real-world baselines. We demonstrate the utility of these
factor models on an open-source, RNA-seq cancer gene expression dataset,
showing that augmenting with a supervised objective results in improved
downstream classification performance, produces principal components with
greater class fidelity, and facilitates identification of genes aligned with
the principal axes of data variance with implications to development of
specific types of cancer.
Related papers
- Generative Principal Component Regression via Variational Inference [2.4415762506639944]
One approach to designing appropriate manipulations is to target key features of predictive models.
We develop a novel objective based on supervised variational autoencoders (SVAEs) that enforces such information is represented in the latent space.
We show in simulations that gPCR dramatically improves target selection in manipulation as compared to standard PCR and SVAEs.
arXiv Detail & Related papers (2024-09-03T22:38:55Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Variable Importance in High-Dimensional Settings Requires Grouping [19.095605415846187]
Conditional Permutation Importance (CPI) bypasses PI's limitations in such cases.
Grouping variables statistically via clustering or some prior knowledge gains some power back.
We show that the approach extended with stacking controls the type-I error even with highly-correlated groups.
arXiv Detail & Related papers (2023-12-18T00:21:47Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
Prediction of protein-ligand interactions (PLI) plays a crucial role in drug discovery.
The development of a versatile model capable of accurately scoring binding affinity and conducting efficient virtual screening remains a challenge.
Here, we propose a viable solution by introducing a novel data augmentation strategy combined with a physics-informed graph neural network.
arXiv Detail & Related papers (2023-07-03T14:46:49Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - Explaining a Series of Models by Propagating Local Feature Attributions [9.66840768820136]
Pipelines involving several machine learning models improve performance in many domains but are difficult to understand.
We introduce a framework to propagate local feature attributions through complex pipelines of models based on a connection to the Shapley value.
Our framework enables us to draw higher-level conclusions based on groups of gene expression features for Alzheimer's and breast cancer histologic grade prediction.
arXiv Detail & Related papers (2021-04-30T22:20:58Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.