論文の概要: The Hidden Costs of Automation: An Empirical Study on GitHub Actions Workflow Maintenance
- arxiv url: http://arxiv.org/abs/2409.02366v1
- Date: Wed, 4 Sep 2024 01:33:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:41:08.425819
- Title: The Hidden Costs of Automation: An Empirical Study on GitHub Actions Workflow Maintenance
- Title(参考訳): 隠れた自動化コスト - GitHubアクションワークフローのメンテナンスに関する実証的研究
- Authors: Pablo Valenzuela-Toledo, Alexandre Bergel, Timo Kehrer, Oscar Nierstrasz,
- Abstract要約: GitHub Actions(GA)は、エンジニアリングタスクの自動実行を合理化するオーケストレーションプラットフォームである。
欠陥の修正、依存関係の更新、あるいは既存のワークフローファイルの修正には、人間の介入が必要である。
- 参考スコア(独自算出の注目度): 45.53834452021771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GitHub Actions (GA) is an orchestration platform that streamlines the automatic execution of software engineering tasks such as building, testing, and deployment. Although GA workflows are the primary means for automation, according to our experience and observations, human intervention is necessary to correct defects, update dependencies, or refactor existing workflow files. In fact, previous research has shown that software artifacts similar to workflows, such as build files and bots, can introduce additional maintenance tasks in software projects. This suggests that workflow files, which are also used to automate repetitive tasks in professional software production, may generate extra workload for developers. However, the nature of such effort has not been well studied. This paper presents a large-scale empirical investigation towards characterizing the maintenance of GA workflows by studying the evolution of workflow files in almost 200 mature GitHub projects across ten programming languages. Our findings largely confirm the results of previous studies on the maintenance of similar artifacts, while also revealing GA-specific insights such as bug fixing and CI/CD improvement being among the major drivers of GA maintenance. A direct implication is that practitioners should be aware of proper resource planning and allocation for maintaining GA workflows, thus exposing the ``hidden costs of automation.'' Our findings also call for identifying and documenting best practices for such maintenance, and for enhanced tool features supporting dependency tracking and better error reporting of workflow specifications.
- Abstract(参考訳): GitHub Actions(GA)は、ビルド、テスト、デプロイメントなどのソフトウェアエンジニアリングタスクの自動実行を合理化するオーケストレーションプラットフォームである。
GAワークフローは自動化の主要な手段ですが、私たちの経験や観察によると、欠陥の修正や依存関係の更新、既存のワークフローファイルのリファクタリングには人間の介入が必要です。
実際、以前の研究では、ビルドファイルやボットのようなワークフローに似たソフトウェアアーティファクトが、ソフトウェアプロジェクトに追加のメンテナンスタスクを導入する可能性があることが示されている。
これは、プロのソフトウェア生産において反復的なタスクを自動化するためにも使われるワークフローファイルが、開発者に余分な負荷を発生させる可能性があることを示唆している。
しかし、そのような取り組みの性質は十分に研究されていない。
本稿では,10言語にわたる約200の成熟したGitHubプロジェクトにおいて,ワークフローファイルの進化を研究することによって,GAワークフローのメンテナンスを特徴付けるための大規模な実証的研究を提案する。
また, GA維持の要因として, バグ修正やCI/CD改善などのGA特有の知見が示された。
直接的な意味は、実践者は、GAワークフローを維持するための適切なリソース計画とアロケーションを認識して、自動化の‘隠れたコスト’を露呈すべきである、ということです。
また、依存関係のトラッキングとワークフロー仕様のエラーレポートの改善をサポートするツール機能の拡張も求めています。
関連論文リスト
- Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - AutoCodeRover: Autonomous Program Improvement [8.66280420062806]
プログラムの改善を自律的に達成するために、GitHubの問題を解決する自動化アプローチを提案する。
AutoCodeRoverと呼ばれるアプローチでは、LLMは洗練されたコード検索機能と組み合わせられ、最終的にプログラムの変更やパッチにつながります。
SWE-bench-lite(300の現実のGitHubイシュー)の実験では、GitHubの問題を解決する効果が向上している(SWE-bench-liteでは19%)。
論文 参考訳(メタデータ) (2024-04-08T11:55:09Z) - Automated User Story Generation with Test Case Specification Using Large Language Model [0.0]
要件文書からユーザストーリーを自動生成するツール「GeneUS」を開発した。
アウトプットはフォーマットで提供され、ダウンストリーム統合の可能性は人気のあるプロジェクト管理ツールに開放されます。
論文 参考訳(メタデータ) (2024-04-02T01:45:57Z) - On the effectiveness of Large Language Models for GitHub Workflows [9.82254417875841]
大規模言語モデル(LLM)は、様々なソフトウェア開発タスクにおいてその効果を実証している。
異なるレベルのプロンプトを持つ5つのワークフロー関連タスクにおけるLLMの有効性を理解するための、最初の総合的研究を行う。
現状のLLMと細調整した3種類のLLMの評価結果から,LLMの現在の有効性と欠点について,様々な興味深い知見が得られた。
論文 参考訳(メタデータ) (2024-03-19T05:14:12Z) - Automated DevOps Pipeline Generation for Code Repositories using Large
Language Models [5.011328607647701]
調査では、GitHubの生成におけるGPT 3.5とGPT 4の習熟度を精査するとともに、最も効率的なパイプライン構築におけるさまざまなプロンプト要素の影響を評価している。
GPTは4。
Probot上に構築されたGitHubアプリを導入し、GitHubエコシステム内でワークフロー生成を自動化する。
論文 参考訳(メタデータ) (2023-12-20T17:47:52Z) - Reusability Challenges of Scientific Workflows: A Case Study for Galaxy [56.78572674167333]
本研究では,既存の再使用可能性について検討し,いくつかの課題を明らかにした。
再利用性防止の課題には、ツールのアップグレード、ツールのサポート、設計上の欠陥、不完全性、ワークフローのロードの失敗などが含まれる。
論文 参考訳(メタデータ) (2023-09-13T20:17:43Z) - Toward Automatically Completing GitHub Workflows [16.302521048148748]
GH-WCOM(GitHub COMpletion)は、開発者が特定のCI/CDパイプライン、すなわちGitHubを書くのをサポートするトランスフォーマーベースのアプローチである。
我々の実証研究は、GH-WCOMが34.23%の正確な予測を提供することを示している。
論文 参考訳(メタデータ) (2023-08-31T14:53:00Z) - Understanding the Challenges of Deploying Live-Traceability Solutions [45.235173351109374]
SAFA.aiは、ほぼリアルタイムな環境で自動トレーサビリティを提供する、プロジェクト固有モデルを微調整するスタートアップである。
本稿では,ソフトウェアトレーサビリティを商業化する上での課題について述べる。
論文 参考訳(メタデータ) (2023-06-19T14:34:16Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - How Useful is Self-Supervised Pretraining for Visual Tasks? [133.1984299177874]
我々は、総合的な合成データセットと下流タスクにまたがる様々な自己教師付きアルゴリズムを評価する。
我々の実験は、利用可能なラベルの数が増えるにつれて、セルフスーパービジョンの有用性がどう変化するかについての洞察を提供する。
論文 参考訳(メタデータ) (2020-03-31T16:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。