論文の概要: An Effective Tag Assignment Approach for Billboard Advertisement
- arxiv url: http://arxiv.org/abs/2409.02455v1
- Date: Wed, 04 Sep 2024 05:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 16:25:07.932888
- Title: An Effective Tag Assignment Approach for Billboard Advertisement
- Title(参考訳): 看板掲示板の効果的なタグアサインメント手法
- Authors: Dildar Ali, Harishchandra Kumar, Suman Banerjee, Yamuna Prasad,
- Abstract要約: 私たちはこの問題をビルボードのタグ割り当て問題と呼んでいます。
私たちはこれを、One-to-Many Bipartite Matchingと呼ばれる従来の2部マッチングの変種としてモデル化します。
スロットにタグを漸進的に割り当てる反復解法を提案する。
- 参考スコア(独自算出の注目度): 6.407369494641195
- License:
- Abstract: Billboard Advertisement has gained popularity due to its significant outrage in return on investment. To make this advertisement approach more effective, the relevant information about the product needs to be reached to the relevant set of people. This can be achieved if the relevant set of tags can be mapped to the correct slots. Formally, we call this problem the Tag Assignment Problem in Billboard Advertisement. Given trajectory, billboard database, and a set of selected billboard slots and tags, this problem asks to output a mapping of selected tags to the selected slots so that the influence is maximized. We model this as a variant of traditional bipartite matching called One-To-Many Bipartite Matching (OMBM). Unlike traditional bipartite matching, a tag can be assigned to only one slot; in the OMBM, a tag can be assigned to multiple slots while the vice versa can not happen. We propose an iterative solution approach that incrementally allocates the tags to the slots. The proposed methodology has been explained with an illustrated example. A complexity analysis of the proposed solution approach has also been conducted. The experimental results on real-world trajectory and billboard datasets prove our claim on the effectiveness and efficiency of the proposed solution.
- Abstract(参考訳): Billboard.comは、投資の見返りに大きな反発があったため人気を博している。
この広告アプローチをより効果的にするためには、製品に関する関連情報が関連する人々のセットに届く必要がある。
これは、関連するタグのセットが正しいスロットにマッピング可能であれば達成できる。
私たちはこの問題をビルボードのタグ割り当て問題と呼んでいます。
トラジェクトリ、看板データベース、選択された掲示板スロットとタグのセットが与えられた場合、選択されたタグのマッピングを選択されたスロットに出力し、影響を最大化する。
我々はこれを、One-To-Many Bipartite Matching (OMBM)と呼ばれる従来の二部マッチングの変種としてモデル化する。
OMBMでは、タグは複数のスロットに割り当てられるが、その逆は起こらない。
スロットにタグを漸進的に割り当てる反復解法を提案する。
提案手法は実例で説明されている。
提案手法の複雑性解析も行われている。
実世界のトラジェクトリとビルボードデータセットに関する実験結果は,提案手法の有効性と有効性に関する我々の主張を裏付けるものである。
関連論文リスト
- UniDEC : Unified Dual Encoder and Classifier Training for Extreme Multi-Label Classification [42.36546066941635]
Extreme Multi-label Classification (XMC) は非常に大きなラベル空間から関連するラベルのサブセットを予測する。
この研究は、デュアルエンコーダと分類器を同時に訓練する新しいエンドツーエンドのトレーニング可能なフレームワークであるUniDECを提案する。
論文 参考訳(メタデータ) (2024-05-04T17:27:51Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
弱教師付きビデオ異常検出は、ビデオレベルのラベルのみを用いて、ビデオ内の異常事象を特定することを目的としている。
2段階の自己学習法は擬似ラベルの自己生成によって著しく改善されている。
本稿では,自己学習のための完全性と不確実性を利用した強化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-08T05:53:53Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
複雑なラベル間関係を効果的にマイニングできる多ラベル画像分類のための一般的なフレームワークを提案する。
提案手法は3つのデータセット上で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-03-08T12:39:05Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) Person Re-identification (ReID) は、ラベル付きソースドメインデータセットで訓練されたモデルを、さらなるアノテーションなしでターゲットドメインデータセットに適応することを目的としている。
最も成功したUDA-ReIDアプローチは、クラスタリングに基づく擬似ラベル予測と表現学習を組み合わせて、2つのステップを交互に実行する。
疑似ラベル予測と表現学習のオンラインインタラクションと相互促進を可能にするグループ認識ラベル転送(GLT)アルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-03-23T07:57:39Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised Domain Adaptive (UDA) Person Re-identification (再ID) は、ターゲットドメインデータのラベルが欠落しているため、難しい作業です。
オフラインクラスタリングフェーズにおける擬似ラベルとオンライントレーニングフェーズにおける特徴を共同で改良する,デュアルリファインメントと呼ばれる新しいアプローチを提案する。
本手法は最先端手法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2020-12-26T07:35:35Z) - Item Tagging for Information Retrieval: A Tripartite Graph Neural
Network based Approach [44.75731013014112]
本稿では,アイテムノードとタグノード間のリンク予測問題として,アイテムタグの定式化を提案する。
この定式化により、多種類のノードとエッジを持つ異種グラフニューラルネットワークを利用するTagGNNモデルが得られる。
オープンデータセットとインダストリアルデータセットの両方の実験結果から,我々のTagGNNアプローチは最先端のマルチラベル分類手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-08-26T13:58:19Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
我々は、入力(予測可能)に応じて予測しやすく、他の可能なラベル(表現可能)をうまく回復できるランドマークとして、ラベルの小さなサブセットを選択することを提案する。
我々は,ADM(Alternating Direction Method)を用いてこの問題を解決する。実世界のデータセットに関する実証研究により,本手法が他の最先端手法よりも優れた分類性能を実現することを示す。
論文 参考訳(メタデータ) (2020-08-16T11:07:44Z) - Few-shot Slot Tagging with Collapsed Dependency Transfer and
Label-enhanced Task-adaptive Projection Network [61.94394163309688]
本稿では,現在最先端の少数ショット分類モデルであるTapNetに基づくラベル強化タスク適応プロジェクションネットワーク(L-TapNet)を提案する。
実験結果から,本モデルは1ショット設定で14.64点のF1スコアで最強の少ショット学習ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-10T07:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。