論文の概要: CoAst: Validation-Free Contribution Assessment for Federated Learning based on Cross-Round Valuation
- arxiv url: http://arxiv.org/abs/2409.02495v1
- Date: Wed, 4 Sep 2024 07:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:41:01.703311
- Title: CoAst: Validation-Free Contribution Assessment for Federated Learning based on Cross-Round Valuation
- Title(参考訳): CoAst:クロスラウンド評価に基づくフェデレーション学習のためのバリデーションフリーコントリビューションアセスメント
- Authors: Hao Wu, Likun Zhang, Shucheng Li, Fengyuan Xu, Sheng Zhong,
- Abstract要約: CoAstは、バリデーションデータにアクセスせずにコントリビューションを評価するための実用的な方法である。
CoAstは、既存のバリデーションベースのメソッドと同等の信頼性を持ち、既存のバリデーションフリーメソッドより優れている。
- 参考スコア(独自算出の注目度): 10.579048525756797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the federated learning (FL) process, since the data held by each participant is different, it is necessary to figure out which participant has a higher contribution to the model performance. Effective contribution assessment can help motivate data owners to participate in the FL training. Research works in this field can be divided into two directions based on whether a validation dataset is required. Validation-based methods need to use representative validation data to measure the model accuracy, which is difficult to obtain in practical FL scenarios. Existing validation-free methods assess the contribution based on the parameters and gradients of local models and the global model in a single training round, which is easily compromised by the stochasticity of model training. In this work, we propose CoAst, a practical method to assess the FL participants' contribution without access to any validation data. The core idea of CoAst involves two aspects: one is to only count the most important part of model parameters through a weights quantization, and the other is a cross-round valuation based on the similarity between the current local parameters and the global parameter updates in several subsequent communication rounds. Extensive experiments show that CoAst has comparable assessment reliability to existing validation-based methods and outperforms existing validation-free methods.
- Abstract(参考訳): フェデレートラーニング(FL)プロセスでは、各参加者が保持するデータが異なるため、どの参加者がモデルの性能に高い貢献をしているかを理解する必要がある。
効果的なコントリビューションアセスメントは、データ所有者がFLトレーニングに参加する動機付けに役立つ。
この分野での研究は、検証データセットが必要かどうかに基づいて2つの方向に分けられる。
検証に基づく手法ではモデルの精度を測定するために代表的検証データを使う必要があり、実際のFLシナリオでは入手が困難である。
既存の検証不要な手法では,1回のトレーニングラウンドにおいて,局所モデルとグローバルモデルのパラメータと勾配に基づいてコントリビューションを評価することができる。
本研究では,検証データにアクセスせずにFL参加者のコントリビューションを評価するための実践的手法であるCoAstを提案する。
CoAstの中核的な考え方は2つの側面である: 1つは重み付け量子化によってモデルパラメータの最も重要な部分だけを数えることであり、もう1つは現在のローカルパラメータとその後の複数の通信ラウンドにおけるグローバルパラメータの更新との類似性に基づく、クロスラウンドな評価である。
大規模な実験により、CoAstは既存のバリデーションベースのメソッドと同等の評価信頼性を持ち、既存のバリデーションフリーメソッドより優れていることが示された。
関連論文リスト
- Redefining Contributions: Shapley-Driven Federated Learning [3.9539878659683363]
フェデレーテッド・ラーニング(FL)は、機械学習において重要なアプローチとして登場した。
参加者が平等に、あるいは正直に貢献しない場合、グローバルなモデル収束を保証することは困難です。
本稿では,FLにおけるコントリビューションの詳細な評価のために,ShapFedと呼ばれる新しいコントリビューションアセスメントアセスメント手法を提案する。
論文 参考訳(メタデータ) (2024-06-01T22:40:31Z) - Data vs. Model Machine Learning Fairness Testing: An Empirical Study [23.535630175567146]
モデルトレーニング前後の公平性をテストすることによって、より包括的なアプローチを評価するための第一歩を踏み出します。
モデル依存度と独立公平度の関係を実証的に分析し,提案手法の有効性を評価する。
以上の結果から, トレーニング前の公平性テストは, バイアスデータ収集プロセスの早期取得において, より安価かつ効果的な手段であることが示唆された。
論文 参考訳(メタデータ) (2024-01-15T14:14:16Z) - TEA: Test-time Energy Adaptation [67.4574269851666]
テスト時間適応(TTA)は、テストデータがトレーニング分布から分岐する際のモデル一般化性を改善することを目的としている。
本稿では,対象データ分布に対するモデルによる認識を高めるための,新しいエネルギーベース視点を提案する。
論文 参考訳(メタデータ) (2023-11-24T10:49:49Z) - Data Valuation and Detections in Federated Learning [4.899818550820576]
フェデレートラーニング(FL)は、生データのプライバシーを維持しながら協調的なモデルトレーニングを可能にする。
このフレームワークの課題は、データの公平かつ効率的な評価であり、FLタスクで高品質なデータを提供するためにクライアントにインセンティブを与えるのに不可欠である。
本稿では,FLタスクにおける事前学習アルゴリズムを使わずに,クライアントのコントリビューションを評価し,関連するデータセットを選択するための新たなプライバシ保護手法を提案する。
論文 参考訳(メタデータ) (2023-11-09T12:01:32Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Provable Fairness for Neural Network Models using Formal Verification [10.90121002896312]
本稿では,ニューラルネットワークモデルの特性を検証する形式的手法を用いて,公平性を向上する手法を提案する。
適切なトレーニングによって、AUCスコアの1%未満のコストで、平均65.4%の不公平さを削減できることを示す。
論文 参考訳(メタデータ) (2022-12-16T16:54:37Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
モデルベース最適化(MBO)では、マシンラーニングを使用して、(基底真理)オラクルと呼ばれるブラックボックス関数に対する報酬の尺度を最大化する候補を設計することに興味があります。
モデル検証中に基底オラクルに対する近似をトレーニングし、その代わりに使用することができるが、その評価は近似的であり、敵の例に対して脆弱である。
本手法は,外挿量を測定するために提案した評価フレームワークにカプセル化されている。
論文 参考訳(メタデータ) (2022-11-19T16:57:37Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。