Self-consistent approach to the dynamics of excitation energy transfer in multichromophoric systems
- URL: http://arxiv.org/abs/2409.02496v1
- Date: Wed, 4 Sep 2024 07:46:32 GMT
- Title: Self-consistent approach to the dynamics of excitation energy transfer in multichromophoric systems
- Authors: Veljko Janković, Tomáš Mančal,
- Abstract summary: We formulate the self-consistent Born approximation to resum the memory- kernel perturbation series in powers of the exciton-environment interaction.
We find that the self-consistent Born approximation is good (poor) at describing energy transfer modulated by an underdamped vibration resonant (off-resonant) with the exciton energy gap.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computationally tractable and reliable, albeit approximate, methods for studying exciton transport in molecular aggregates immersed in structured bosonic environments have been actively developed. Going beyond the lowest-order (Born) approximation for the memory kernel of the generalized quantum master equation typically results in complicated and possibly divergent expressions. Starting from the memory kernel in the Born approximation, and recognizing the quantum master equation as the Dyson equation of the Green's functions theory, we formulate the self-consistent Born approximation to resum the memory-kernel perturbation series in powers of the exciton-environment interaction. Our formulation is in the Liouville space and frequency domain, and handles arbitrary exciton-environment spectral densities. In a molecular dimer coupled to an overdamped oscillator environment, we conclude that the self-consistent cycle significantly improves the Born-approximation energy-transfer dynamics. The dynamics in the self-consistent Born approximation agree well with solutions of hierarchical equations of motion over a wide range of parameters, including the most challenging regimes of strong exciton-environment interactions, slow environments, and low temperatures. This is rationalized by analytical considerations of coherence-dephasing dynamics in the pure-dephasing model. We find that the self-consistent Born approximation is good (poor) at describing energy transfer modulated by an underdamped vibration resonant (off-resonant) with the exciton energy gap. Nevertheless, it reasonably describes exciton dynamics in the seven-site model of the Fenna-Matthews-Olson complex in a realistic environment comprising both an overdamped continuum and underdamped vibrations.
Related papers
- Non-Markovian to Markovian decay in structured environments with correlated disorder [0.0]
We consider an atom coupled to an array of cavities in the presence of on-site correlated disorder.
The correlation is long-ranged and associated with the trace of a fractional Brownian motion following a power-law spectrum.
We observe a change from non-Markovian to Markovian decay in the presence of disorder by tuning the correlation parameter.
arXiv Detail & Related papers (2024-11-21T16:56:56Z) - Photo-induced dynamics with continuous and discrete quantum baths [0.0]
We introduce a pure-state unraveled hybrid-bath method that describes a continuous environment via a set of discrete, effective bosonic degrees of freedom.
Our method is capable of describing both, a continuous spectral density and sharp peaks embedded into it.
We demonstrate that compared to unitary descriptions, a significantly smaller number of bosonic modes suffices to describe the excitonic dynamics accurately.
arXiv Detail & Related papers (2024-06-11T08:20:50Z) - Dephasing and pseudo-coherent quantum dynamics in super-Ohmic
environments [0.0]
We investigate within a spin-boson model the influence of a super-Ohmic environment on the dynamics of a quantum two-state system.
Super-Ohmic purely dephasing fluctuations strongly suppress the amplitude of coherent dynamics at very short times.
The according phase separation line shows also a non-monotonous behaviour, very similar to the pseudo-coherent dynamics.
arXiv Detail & Related papers (2023-03-31T17:11:03Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions [72.46695228124449]
We study a one-dimensional polaronic topological superconductor with phonon-dressed $p$-wave pairing.
We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior.
arXiv Detail & Related papers (2020-06-24T07:32:51Z) - Hyperbolic ring based formulation for thermo field dynamics, quantum
dissipation, entanglement, and holography [0.0]
The classical and quantum formulations for open systems related to dissipative dynamics are constructed on a complex hyperbolic ring.
The hyperbolic rotations are revealed as an underlying internal symmetry for the dissipative dynamics.
Entanglement entropy operators for the subsystem of interest and the environment are constructed as a tool for study the entanglement generated from the dissipation.
arXiv Detail & Related papers (2020-06-08T17:47:17Z) - Environmentally Induced Entanglement -- Anomalous Behavior in the
Adiabatic Regime [0.0]
In a perturbative regime the influence of the environment on the system dynamics can effectively be described by a unitary contribution.
For resonant qubits, even in the adiabatic regime, the entanglement dynamics is still influenced by an environmentally induced Hamiltonian interaction.
arXiv Detail & Related papers (2020-06-08T08:39:03Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.