Photo-induced dynamics with continuous and discrete quantum baths
- URL: http://arxiv.org/abs/2406.07047v3
- Date: Mon, 2 Sep 2024 17:32:21 GMT
- Title: Photo-induced dynamics with continuous and discrete quantum baths
- Authors: Zhaoxuan Xie, Mattia Moroder, Ulrich Schollwöck, Sebastian Paeckel,
- Abstract summary: We introduce a pure-state unraveled hybrid-bath method that describes a continuous environment via a set of discrete, effective bosonic degrees of freedom.
Our method is capable of describing both, a continuous spectral density and sharp peaks embedded into it.
We demonstrate that compared to unitary descriptions, a significantly smaller number of bosonic modes suffices to describe the excitonic dynamics accurately.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ultrafast quantum dynamics of photophysical processes in complex molecules is an extremely challenging computational problem with a wide variety of fascinating applications in quantum chemistry and biology. Inspired by recent developments in open quantum systems, we introduce a pure-state unraveled hybrid-bath method that describes a continuous environment via a set of discrete, effective bosonic degrees of freedom using a Markovian embedding. Our method is capable of describing both, a continuous spectral density and sharp peaks embedded into it. Thereby, we overcome the limitations of previous methods, which either capture long-time memory effects using the unitary dynamics of a set of discrete vibrational modes or use memoryless Markovian environments employing a Lindblad or Redfield master equation. We benchmark our method against two paradigmatic problems from quantum chemistry and biology. We demonstrate that compared to unitary descriptions, a significantly smaller number of bosonic modes suffices to describe the excitonic dynamics accurately, yielding a computational speed-up of nearly an order of magnitude. Furthermore, we take into account explicitly the effect of a $\delta$-peak in the spectral density of a light-harvesting complex, demonstrating the strong impact of the long-time memory of the environment on the dynamics.
Related papers
- Self-consistent approach to the dynamics of excitation energy transfer in multichromophoric systems [0.0]
We formulate the self-consistent Born approximation to resum the memory- kernel perturbation series in powers of the exciton-environment interaction.
We find that the self-consistent Born approximation is good (poor) at describing energy transfer modulated by an underdamped vibration resonant (off-resonant) with the exciton energy gap.
arXiv Detail & Related papers (2024-09-04T07:46:32Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - High-Dimensional Bell States: A Paradigm Shift for Quantum Illumination [1.3654846342364308]
This paper solves the open problem of characterizing the performance of quantum illumination (QI) with discrete variable states.
In the limit as $M rightarrow infty$, the maximally entangled $M$ mode Bell state achieves optimal performance, matching the two-mode squeezed vacuum in a high-noise regime and exceeding it in low-noise.
A closer analysis reveals that this advantage stems from retained entanglement in the transmitted Bell state, a paradigm-shifting discovery since interaction with the environment in optical systems is believed to break entanglement.
arXiv Detail & Related papers (2024-07-10T19:19:31Z) - Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - Multichromatic Floquet engineering of quantum dissipation [0.0]
monochromatic driving of a quantum system is a successful technique in quantum simulations.
We show that the time coarse-grained dynamics of such a driven closed quantum system is encapsulated in an effective Master equation.
As an application, we emulate the dissipation induced by phase noise and incoherent emission/absorption processes in the bichromatic driving of a two-level system.
arXiv Detail & Related papers (2023-06-02T16:51:28Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.