Sample what you cant compress
- URL: http://arxiv.org/abs/2409.02529v3
- Date: Wed, 16 Oct 2024 04:08:57 GMT
- Title: Sample what you cant compress
- Authors: Vighnesh Birodkar, Gabriel Barcik, James Lyon, Sergey Ioffe, David Minnen, Joshua V. Dillon,
- Abstract summary: We show how to learn a continuous encoder and decoder under a diffusion-based loss.
This approach yields better reconstruction quality as compared to GAN-based autoencoders.
We also show that the resulting representation is easier to model with a latent diffusion model as compared to the representation obtained from a state-of-the-art GAN-based loss.
- Score: 6.24979299238534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For learned image representations, basic autoencoders often produce blurry results. Reconstruction quality can be improved by incorporating additional penalties such as adversarial (GAN) and perceptual losses. Arguably, these approaches lack a principled interpretation. Concurrently, in generative settings diffusion has demonstrated a remarkable ability to create crisp, high quality results and has solid theoretical underpinnings (from variational inference to direct study as the Fisher Divergence). Our work combines autoencoder representation learning with diffusion and is, to our knowledge, the first to demonstrate the efficacy of jointly learning a continuous encoder and decoder under a diffusion-based loss. We demonstrate that this approach yields better reconstruction quality as compared to GAN-based autoencoders while being easier to tune. We also show that the resulting representation is easier to model with a latent diffusion model as compared to the representation obtained from a state-of-the-art GAN-based loss. Since our decoder is stochastic, it can generate details not encoded in the otherwise deterministic latent representation; we therefore name our approach "Sample what you can't compress", or SWYCC for short.
Related papers
- Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction.
Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
arXiv Detail & Related papers (2024-04-07T10:57:54Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - Denoising Diffusion Autoencoders are Unified Self-supervised Learners [58.194184241363175]
This paper shows that the networks in diffusion models, namely denoising diffusion autoencoders (DDAE), are unified self-supervised learners.
DDAE has already learned strongly linear-separable representations within its intermediate layers without auxiliary encoders.
Our diffusion-based approach achieves 95.9% and 50.0% linear evaluation accuracies on CIFAR-10 and Tiny-ImageNet.
arXiv Detail & Related papers (2023-03-17T04:20:47Z) - A Residual Diffusion Model for High Perceptual Quality Codec
Augmentation [1.868930790098705]
Diffusion probabilistic models have recently achieved remarkable success in generating high quality image and video data.
In this work, we build on this class of generative models and introduce a method for lossy compression of high resolution images.
We show that while sampling from diffusion probabilistic models is notoriously expensive, we show that in the compression setting the number of steps can be drastically reduced.
arXiv Detail & Related papers (2023-01-13T11:27:26Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - Lossy Compression with Gaussian Diffusion [28.930398810600504]
We describe a novel lossy compression approach called DiffC which is based on unconditional diffusion generative models.
We implement a proof of concept and find that it works surprisingly well despite the lack of an encoder transform.
We show that a flow-based reconstruction achieves a 3 dB gain over ancestral sampling at highs.
arXiv Detail & Related papers (2022-06-17T16:46:31Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.