論文の概要: Understanding eGFR Trajectories and Kidney Function Decline via Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2409.02530v1
- Date: Wed, 4 Sep 2024 08:44:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:30:37.229508
- Title: Understanding eGFR Trajectories and Kidney Function Decline via Large Multimodal Models
- Title(参考訳): 大規模マルチモーダルモデルによるeGFR軌道とキドニー関数の減少の理解
- Authors: Chih-Yuan Li, Jun-Ting Wu, Chan Hsu, Ming-Yen Lin, Yihuang Kang,
- Abstract要約: LLM(Large Language Models)とLMM(Large Multimodal Models)は、多様なアプリケーションのための堅牢な基盤モデルとして機能する。
本研究は,50例の検査値と臨床値からなるデータセットを用いて,将来のeGFRレベルを予測するLMMの可能性について検討した。
これらのモデルとeGFRトラジェクトリの正確なプロンプトと視覚表現を組み合わせることで,既存の機械学習モデルに匹敵する予測性能が得られることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The estimated Glomerular Filtration Rate (eGFR) is an essential indicator of kidney function in clinical practice. Although traditional equations and Machine Learning (ML) models using clinical and laboratory data can estimate eGFR, accurately predicting future eGFR levels remains a significant challenge for nephrologists and ML researchers. Recent advances demonstrate that Large Language Models (LLMs) and Large Multimodal Models (LMMs) can serve as robust foundation models for diverse applications. This study investigates the potential of LMMs to predict future eGFR levels with a dataset consisting of laboratory and clinical values from 50 patients. By integrating various prompting techniques and ensembles of LMMs, our findings suggest that these models, when combined with precise prompts and visual representations of eGFR trajectories, offer predictive performance comparable to existing ML models. This research extends the application of foundation models and suggests avenues for future studies to harness these models in addressing complex medical forecasting challenges.
- Abstract(参考訳): 糸球体ろ過速度 (eGFR) は, 臨床における腎機能の指標として重要である。
臨床および実験データを用いた従来の方程式と機械学習(ML)モデルはeGFRを推定できるが、腎学者やML研究者にとって、将来のeGFRレベルを正確に予測することは重要な課題である。
近年の進歩は,Large Language Models (LLMs) とLarge Multimodal Models (LMMs) が,多様なアプリケーションのための堅牢な基盤モデルとして機能することを実証している。
本研究は,50例の検査値と臨床値からなるデータセットを用いて,将来のeGFRレベルを予測するLMMの可能性について検討した。
LMMの様々なプロンプト技術とアンサンブルを統合することにより、これらのモデルとeGFRトラジェクトリの正確なプロンプトと視覚表現を組み合わせることで、既存のMLモデルに匹敵する予測性能が得られることが示唆された。
本研究は、基礎モデルの適用を拡大し、複雑な医療予測課題に対処するためにこれらのモデルを活用するための今後の研究の道筋を提案する。
関連論文リスト
- Stronger Baseline Models -- A Key Requirement for Aligning Machine Learning Research with Clinical Utility [0.0]
機械学習モデルを高精細な臨床環境にデプロイしようとするとき、よく知られた障壁が存在する。
評価において,より強力なベースラインモデルを含むと,下流効果が重要となることを実証的に示す。
本稿では,MLモデルを臨床現場でより効果的に研究・展開するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2024-09-18T16:38:37Z) - Assessing Reusability of Deep Learning-Based Monotherapy Drug Response Prediction Models Trained with Omics Data [43.57729817547386]
がん薬物応答予測モデルは、精度オンコロジーへの有望なアプローチを示す。
深層学習(DL)法はこの分野で大きな可能性を秘めている。
これは、より広い科学コミュニティによって改善され、テストされる、再利用可能で適応可能なモデルの必要性を強調している。
論文 参考訳(メタデータ) (2024-09-18T16:08:28Z) - Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques [6.417777780911223]
本研究は,慢性腎臓病(CKD)から末期腎疾患(ESRD)への進行を予測するために,高度な機械学習とディープラーニング技術を組み合わせた管理クレームデータを活用する可能性を検討する。
我々は、ランダムフォレストやXGBoostといった従来の機械学習手法とLong Short-Term Memory(LSTM)ネットワークのようなディープラーニングアプローチを用いて、大手医療保険会社が提供した包括的10年間のデータセットを分析し、複数の観測窓の予測モデルを開発する。
以上の結果から,LSTMモデル,特に24ヶ月の観測窓を用いた場合,ESRD進行予測において優れた性能を示した。
論文 参考訳(メタデータ) (2024-09-18T16:03:57Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Predicting Lung Cancer Patient Prognosis with Large Language Models [20.97970447748789]
大規模言語モデル(LLM)は、広範な学習知識に基づいてテキストを処理・生成する能力に注目されている。
肺癌患者の予後予測におけるGPT-4o miniおよびGPT-3.5の有用性について検討した。
論文 参考訳(メタデータ) (2024-08-15T06:36:27Z) - The Power of Combining Data and Knowledge: GPT-4o is an Effective Interpreter of Machine Learning Models in Predicting Lymph Node Metastasis of Lung Cancer [18.32753287825974]
リンパ節転移(LNM)は肺癌患者の早期治療を決定する重要な因子である。
近年,大きな言語モデル (LLM) が注目されている。
本稿では,LLMが取得した医療知識と機械学習モデルで同定した潜伏パターンを組み合わせた新しいアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T09:42:24Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。