論文の概要: Understanding eGFR Trajectories and Kidney Function Decline via Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2409.02530v1
- Date: Wed, 4 Sep 2024 08:44:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:30:37.229508
- Title: Understanding eGFR Trajectories and Kidney Function Decline via Large Multimodal Models
- Title(参考訳): 大規模マルチモーダルモデルによるeGFR軌道とキドニー関数の減少の理解
- Authors: Chih-Yuan Li, Jun-Ting Wu, Chan Hsu, Ming-Yen Lin, Yihuang Kang,
- Abstract要約: LLM(Large Language Models)とLMM(Large Multimodal Models)は、多様なアプリケーションのための堅牢な基盤モデルとして機能する。
本研究は,50例の検査値と臨床値からなるデータセットを用いて,将来のeGFRレベルを予測するLMMの可能性について検討した。
これらのモデルとeGFRトラジェクトリの正確なプロンプトと視覚表現を組み合わせることで,既存の機械学習モデルに匹敵する予測性能が得られることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The estimated Glomerular Filtration Rate (eGFR) is an essential indicator of kidney function in clinical practice. Although traditional equations and Machine Learning (ML) models using clinical and laboratory data can estimate eGFR, accurately predicting future eGFR levels remains a significant challenge for nephrologists and ML researchers. Recent advances demonstrate that Large Language Models (LLMs) and Large Multimodal Models (LMMs) can serve as robust foundation models for diverse applications. This study investigates the potential of LMMs to predict future eGFR levels with a dataset consisting of laboratory and clinical values from 50 patients. By integrating various prompting techniques and ensembles of LMMs, our findings suggest that these models, when combined with precise prompts and visual representations of eGFR trajectories, offer predictive performance comparable to existing ML models. This research extends the application of foundation models and suggests avenues for future studies to harness these models in addressing complex medical forecasting challenges.
- Abstract(参考訳): 糸球体ろ過速度 (eGFR) は, 臨床における腎機能の指標として重要である。
臨床および実験データを用いた従来の方程式と機械学習(ML)モデルはeGFRを推定できるが、腎学者やML研究者にとって、将来のeGFRレベルを正確に予測することは重要な課題である。
近年の進歩は,Large Language Models (LLMs) とLarge Multimodal Models (LMMs) が,多様なアプリケーションのための堅牢な基盤モデルとして機能することを実証している。
本研究は,50例の検査値と臨床値からなるデータセットを用いて,将来のeGFRレベルを予測するLMMの可能性について検討した。
LMMの様々なプロンプト技術とアンサンブルを統合することにより、これらのモデルとeGFRトラジェクトリの正確なプロンプトと視覚表現を組み合わせることで、既存のMLモデルに匹敵する予測性能が得られることが示唆された。
本研究は、基礎モデルの適用を拡大し、複雑な医療予測課題に対処するためにこれらのモデルを活用するための今後の研究の道筋を提案する。
関連論文リスト
- The Power of Combining Data and Knowledge: GPT-4o is an Effective Interpreter of Machine Learning Models in Predicting Lymph Node Metastasis of Lung Cancer [18.32753287825974]
リンパ節転移(LNM)は肺癌患者の早期治療を決定する重要な因子である。
近年,大きな言語モデル (LLM) が注目されている。
本稿では,LLMが取得した医療知識と機械学習モデルで同定した潜伏パターンを組み合わせた新しいアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T09:42:24Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
本研究では,医療用テキストに最適化された教師ありニューラルマシン翻訳モデルを開発するために,新しい"LLMs-in-the-loop"アプローチを提案する。
6つの言語での独自の平行コーパスは、科学論文、人工的に生成された臨床文書、医療文書から編纂された。
MarianMTベースのモデルは、Google Translate、DeepL、GPT-4-Turboより優れている。
論文 参考訳(メタデータ) (2024-07-16T19:32:23Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - A Probabilistic Fluctuation based Membership Inference Attack for Diffusion Models [32.15773300068426]
メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングセットに、モデルをクエリすることでレコードが存在するかどうかを特定する。
PFAMI(Probabilistic Fluctuation Assessing Membership Inference Attack)を提案する。
PFAMIは最高のベースラインと比較して攻撃成功率(ASR)を約27.9%向上させることができる。
論文 参考訳(メタデータ) (2023-08-23T14:00:58Z) - Exploration of the Rashomon Set Assists Trustworthy Explanations for
Medical Data [4.499833362998488]
本稿では,Rashomon集合におけるモデル探索の新たなプロセスを紹介し,従来のモデリング手法を拡張した。
動作の異なるモデルを検出するために,$textttRashomon_DETECT$アルゴリズムを提案する。
モデル間の変動効果の差を定量化するために,機能的データ解析に基づくプロファイル分散指数(PDI)を導入する。
論文 参考訳(メタデータ) (2023-08-22T13:53:43Z) - CancerGPT: Few-shot Drug Pair Synergy Prediction using Large Pre-trained
Language Models [3.682742580232362]
大規模事前学習言語モデル(LLM)は、様々な分野にわたる数ショット学習において大きな可能性を秘めている。
我々の研究は、限られたデータを持つまれな組織において、薬物対のシナジー予測に最初に取り組みました。
論文 参考訳(メタデータ) (2023-04-18T02:49:53Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。