iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering Nearest Neighbor Search
- URL: http://arxiv.org/abs/2409.02571v1
- Date: Wed, 04 Sep 2024 09:41:52 GMT
- Title: iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering Nearest Neighbor Search
- Authors: Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, Christian S. Jensen,
- Abstract summary: Range-filtering approximate nearest neighbor (RFANN) search is attracting increasing attention in academia and industry.
Recent study proposes to build $O(n2)$ dedicated graph-based indexes for all possible query ranges.
We materialize graph-based indexes, called elemental graphs, for a moderate number of ranges.
- Score: 24.85572470526277
- License:
- Abstract: Range-filtering approximate nearest neighbor (RFANN) search is attracting increasing attention in academia and industry. Given a set of data objects, each being a pair of a high-dimensional vector and a numeric value, an RFANN query with a vector and a numeric range as parameters returns the data object whose numeric value is in the query range and whose vector is nearest to the query vector. To process this query, a recent study proposes to build $O(n^2)$ dedicated graph-based indexes for all possible query ranges to enable efficient processing on a database of $n$ objects. As storing all these indexes is prohibitively expensive, the study constructs compressed indexes instead, which reduces the memory consumption considerably. However, this incurs suboptimal performance because the compression is lossy. In this study, instead of materializing a compressed index for every possible query range in preparation for querying, we materialize graph-based indexes, called elemental graphs, for a moderate number of ranges. We then provide an effective and efficient algorithm that during querying can construct an index for any query range using the elemental graphs. We prove that the time needed to construct such an index is low. We also cover an experimental study on real-world datasets that provides evidence that the materialized elemental graphs only consume moderate space and that the proposed method is capable of superior and stable query performance across different query workloads.
Related papers
- Operational Advice for Dense and Sparse Retrievers: HNSW, Flat, or Inverted Indexes? [62.57689536630933]
We provide experimental results on the BEIR dataset using the open-source Lucene search library.
Our results provide guidance for today's search practitioner in understanding the design space of dense and sparse retrievers.
arXiv Detail & Related papers (2024-09-10T12:46:23Z) - Exact Trajectory Similarity Search With N-tree: An Efficient Metric Index for kNN and Range Queries [2.8059675184983424]
Similarity search is the problem of finding in a collection of objects that are similar to a given query object.
Trajectories are recorded movements of mobile objects such as vehicles, animals, public transportation, or parts of the human body.
We propose a novel distance function called DistanceAvg to capture the similarity of such movements.
arXiv Detail & Related papers (2024-08-14T16:21:28Z) - Vector search with small radiuses [10.880913075221361]
This paper focuses on the common case where a hard decision needs to be taken depending on the vector retrieval results.
We show that the value of a range search result can be modeled rigorously based on the query-to-vector distance.
This yields a metric for range search, RSM, that is both principled and easy to compute without running an end-to-end evaluation.
arXiv Detail & Related papers (2024-03-16T00:34:25Z) - Group Testing for Accurate and Efficient Range-Based Near Neighbor Search for Plagiarism Detection [2.3814052021083354]
This work presents an adaptive group testing framework for the range-based high dimensional near neighbor search problem.
Our method efficiently marks each item in a database as neighbor or non-neighbor of a query point, based on a cosine distance threshold without exhaustive search.
We show that, using softmax-based features, our method achieves a more than ten-fold speed-up over exhaustive search with no loss of accuracy.
arXiv Detail & Related papers (2023-11-05T06:12:03Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Learning Query Expansion over the Nearest Neighbor Graph [94.80212602202518]
Graph Query Expansion (GQE) is presented, which is learned in a supervised manner and performs aggregation over an extended neighborhood of the query.
The technique achieves state-of-the-art results over known benchmarks.
arXiv Detail & Related papers (2021-12-05T19:48:42Z) - IRLI: Iterative Re-partitioning for Learning to Index [104.72641345738425]
Methods have to trade between obtaining high accuracy while maintaining load balance and scalability in distributed settings.
We propose a novel approach called IRLI, which iteratively partitions the items by learning the relevant buckets directly from the query-item relevance data.
We mathematically show that IRLI retrieves the correct item with high probability under very natural assumptions and provides superior load balancing.
arXiv Detail & Related papers (2021-03-17T23:13:25Z) - The Case for Learned Spatial Indexes [62.88514422115702]
We use techniques proposed from a state-of-the art learned multi-dimensional index structure (namely, Flood) to answer spatial range queries.
We show that (i) machine learned search within a partition is faster by 11.79% to 39.51% than binary search when using filtering on one dimension.
We also refine using machine learned indexes is 1.23x to 1.83x times faster than closest competitor which filters on two dimensions.
arXiv Detail & Related papers (2020-08-24T12:09:55Z) - A Practical Index Structure Supporting Fr\'echet Proximity Queries Among
Trajectories [1.9335262420787858]
We present a scalable approach for range and $k$ nearest neighbor queries under computationally expensive metrics.
Based on clustering for metric indexes, we obtain a dynamic tree structure whose size is linear in the number of trajectories.
We analyze the efficiency and effectiveness of our methods with extensive experiments on diverse synthetic and real-world data sets.
arXiv Detail & Related papers (2020-05-28T04:12:43Z) - Progressively Pretrained Dense Corpus Index for Open-Domain Question
Answering [87.32442219333046]
We propose a simple and resource-efficient method to pretrain the paragraph encoder.
Our method outperforms an existing dense retrieval method that uses 7 times more computational resources for pretraining.
arXiv Detail & Related papers (2020-04-30T18:09:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.