論文の概要: A Medical Multimodal Large Language Model for Pediatric Pneumonia
- arxiv url: http://arxiv.org/abs/2409.02608v1
- Date: Wed, 4 Sep 2024 10:45:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:10:42.892604
- Title: A Medical Multimodal Large Language Model for Pediatric Pneumonia
- Title(参考訳): 小児肺炎に対する医療用マルチモーダル大言語モデル
- Authors: Weiwei Tian, Xinyu Huang, Tianhao Cheng, Wen He, Jinwu Fang, Rui Feng, Daoying Geng, Xiaobo Zhang,
- Abstract要約: 小児肺炎は世界中で5歳未満の小児の死因となっている。
小児肺炎に対する医療用マルチモーダル大言語モデル(P2Med-MLLM)を提案する。
P2Med-MLLMは、広範かつ大規模なデータセットに基づいてトレーニングされた、純粋なテキストデータとイメージテキストデータの両方を処理することができる。
- 参考スコア(独自算出の注目度): 15.763735481048796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pediatric pneumonia is the leading cause of death among children under five years worldwide, imposing a substantial burden on affected families. Currently, there are three significant hurdles in diagnosing and treating pediatric pneumonia. Firstly, pediatric pneumonia shares similar symptoms with other respiratory diseases, making rapid and accurate differential diagnosis challenging. Secondly, primary hospitals often lack sufficient medical resources and experienced doctors. Lastly, providing personalized diagnostic reports and treatment recommendations is labor-intensive and time-consuming. To tackle these challenges, we proposed a Medical Multimodal Large Language Model for Pediatric Pneumonia (P2Med-MLLM). It was capable of handling diverse clinical tasks, such as generating free-text radiology reports and medical records within a unified framework. Specifically, P2Med-MLLM can process both pure text and image-text data, trained on an extensive and large-scale dataset (P2Med-MD), including real clinical information from 163,999 outpatient and 8,684 inpatient cases. This dataset comprised 2D chest X-ray images, 3D chest CT images, corresponding radiology reports, and outpatient and inpatient records. We designed a three-stage training strategy to enable P2Med-MLLM to comprehend medical knowledge and follow instructions for various clinical tasks. To rigorously evaluate P2Med-MLLM's performance, we developed P2Med-MBench, a benchmark consisting of 642 meticulously verified samples by pediatric pulmonology specialists, covering six clinical decision-support tasks and a balanced variety of diseases. The automated scoring results demonstrated the superiority of P2Med-MLLM. This work plays a crucial role in assisting primary care doctors with prompt disease diagnosis and treatment planning, reducing severe symptom mortality rates, and optimizing the allocation of medical resources.
- Abstract(参考訳): 小児肺炎は世界中で5歳未満の子どもの死因の主要な原因であり、家族に大きな負担がかかる。
現在、小児肺炎の診断と治療には3つの重要なハードルがある。
第一に、小児肺炎は他の呼吸器疾患と類似の症状を共有し、迅速かつ正確な鑑別診断を困難にしている。
第二に、主要な病院は十分な医療資源と経験豊富な医師が不足していることが多い。
最後に、パーソナライズされた診断報告と治療勧告を提供することは、労働集約的で時間を要する。
これらの課題に対処するため,小児肺炎(P2Med-MLLM)のための医療用マルチモーダル大規模言語モデルを提案した。
フリーテキストの放射線学レポートや医療記録を統一された枠組みで作成するなど、多様な臨床業務を扱うことができた。
具体的には、P2Med-MLLMは、広範かつ大規模なデータセット(P2Med-MD)に基づいてトレーニングされた純粋なテキストデータと画像テキストデータの両方を処理することができる。
本データセットは, 2次元胸部X線像, 3次元胸部CT像, 対応する放射線診断報告, 外来および入院記録から構成した。
我々はP2Med-MLLMが医療知識を理解できるように3段階のトレーニング戦略を設計し、様々な臨床業務の指示に従うようにした。
P2Med-MLLMの性能を厳格に評価するため,小児肺科専門医による642検体を用いたP2Med-MBenchを作成した。
自動スコアリングはP2Med-MLLMの優位性を示した。
本研究は, 疾患診断と治療計画の迅速な支援, 重症症状死亡率の低減, 医療資源の配分の最適化に重要な役割を担っている。
関連論文リスト
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them [41.65016162783525]
我々は、より経験豊富な医師と協力する医療アシスタントになるよう、Large Language Modelsをチューニングすることに重点を置いている。
我々は、医師のワークフロー全体をサポートするために、DoctorFLANと呼ばれる中国の医療データセットを構築した。
550個のシングルターンQ&Aを含むDoctorFLAN-textittestと74個のマルチターン会話を含むDotaBenchを構築し,医師指向のシナリオにおけるLCMの評価を行った。
論文 参考訳(メタデータ) (2024-06-26T03:08:24Z) - Summarizing Radiology Reports Findings into Impressions [1.8964110318127383]
本稿では,最新の放射線学報告による要約性能のモデルを提案する。
また、モデル限界と放射線学知識の獲得について分析する。
我々の最高の性能モデルは、58.75/100 ROUGE-L F1で調整されたBERT-to-BERTエンコーダデコーダであった。
論文 参考訳(メタデータ) (2024-05-10T20:29:25Z) - Digital Diagnostics: The Potential Of Large Language Models In Recognizing Symptoms Of Common Illnesses [0.2995925627097048]
本研究は,患者症状を解釈し,一般的な疾患に適合する診断を判定することにより,各モデルの診断能力を評価する。
GPT-4は、医療データに基づくトレーニングの深部および完全な履歴から高い診断精度を示す。
Geminiは、病気のトリアージにおいて重要なツールとして高い精度で実行し、信頼性のあるモデルになる可能性を示している。
論文 参考訳(メタデータ) (2024-05-09T15:12:24Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - Towards Generalist Foundation Model for Radiology by Leveraging
Web-scale 2D&3D Medical Data [66.9359934608229]
この研究はRadFMと呼ばれるRadlogy Foundation Modelの開発を開始することを目的としている。
われわれの知る限りでは、これは2Dスキャンと3Dスキャンによる、最初の大規模で高品質な医療用ビジュアル言語データセットである。
本稿では,モダリティ認識,疾患診断,視覚的質問応答,レポート生成,合理的診断の5つのタスクからなる新しい評価ベンチマークRadBenchを提案する。
論文 参考訳(メタデータ) (2023-08-04T17:00:38Z) - Specialty-Oriented Generalist Medical AI for Chest CT Screening [14.31187762890342]
本稿では,肺がん検診および関連する課題に応用したM3FM(Maltimodal-multitask foundation model)を提案する。
M3FMは、最先端のシングルモーダルタスク特化モデルより一貫して優れている。
専門的な汎用的な医療AIモデルとして、M3FMは、他の医療分野における同様のブレークスルーの道を開く。
論文 参考訳(メタデータ) (2023-04-03T20:19:56Z) - Identification of Pediatric Respiratory Diseases Using Fine-grained
Diagnosis System [41.60894942209209]
喘息、気管支炎、肺炎、上気道感染症(RTI)などの呼吸器疾患は、クリニックで最も一般的な疾患である。
小児科では、患者の状況を表現する能力に限界があるため、正確な診断がさらに困難になる。
本稿では,小児科における詳細な診断支援システムを提案する。
論文 参考訳(メタデータ) (2021-08-24T16:09:39Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。