論文の概要: LLM-Assisted Visual Analytics: Opportunities and Challenges
- arxiv url: http://arxiv.org/abs/2409.02691v1
- Date: Wed, 4 Sep 2024 13:24:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 18:06:50.020380
- Title: LLM-Assisted Visual Analytics: Opportunities and Challenges
- Title(参考訳): LLM支援ビジュアルアナリティクス:機会と課題
- Authors: Maeve Hutchinson, Radu Jianu, Aidan Slingsby, Pranava Madhyastha,
- Abstract要約: 本稿では,大規模言語モデル (LLM) を視覚分析システム (VA) に統合することを検討する。
LLMがVAにもたらす新たな可能性、特に通常のユースケースを超えてVAプロセスを変更する方法について強調する。
VAタスクで現在のLLMを使用する際の顕著な課題を慎重に検討する。
- 参考スコア(独自算出の注目度): 4.851427485686741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the integration of large language models (LLMs) into visual analytics (VA) systems to transform their capabilities through intuitive natural language interactions. We survey current research directions in this emerging field, examining how LLMs are integrated into data management, language interaction, visualisation generation, and language generation processes. We highlight the new possibilities that LLMs bring to VA, especially how they can change VA processes beyond the usual use cases. We especially highlight building new visualisation-language models, allowing access of a breadth of domain knowledge, multimodal interaction, and opportunities with guidance. Finally, we carefully consider the prominent challenges of using current LLMs in VA tasks. Our discussions in this paper aim to guide future researchers working on LLM-assisted VA systems and help them navigate common obstacles when developing these systems.
- Abstract(参考訳): 本研究では,大規模言語モデル (LLM) を視覚分析システム (VA) に統合して,直感的な自然言語インタラクションを通じてその能力を変換する方法について検討する。
本研究では,LLMがデータ管理,言語インタラクション,可視化生成,および言語生成プロセスにどのように統合されているかを調査し,この新興分野における現在の研究方向について調査する。
LLMがVAにもたらす新たな可能性、特に通常のユースケースを超えてVAプロセスを変更する方法について強調する。
特に、ドメイン知識、マルチモーダルインタラクション、ガイダンスによる機会へのアクセスが可能な、新しい可視化言語モデルの構築に重点を置いています。
最後に、VAタスクで現在のLLMを使用する際の顕著な課題について慎重に検討する。
本稿では,LLM支援VAシステムに関する今後の研究者の指導と,これらのシステム開発における共通障害のナビゲートを支援することを目的とする。
関連論文リスト
- Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey [39.82566660592583]
大規模言語モデル(LLM)は、自然言語理解、テキスト要約、機械翻訳といった様々なタスクにおいて顕著な成功を収めている。
彼らの汎用的な性質は、医療、化学、法的な分析といった専門的な知識を必要とするドメイン固有のアプリケーションにおいて、その効果を制限していることが多い。
これを解決するために、研究者はドメイン固有の知識を統合することでLLMを強化する様々な方法を模索してきた。
論文 参考訳(メタデータ) (2025-02-15T07:43:43Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - NavGPT-2: Unleashing Navigational Reasoning Capability for Large Vision-Language Models [30.685419129265252]
我々は、VLN特化モデルとLLMに基づくナビゲーションパラダイムの分割を橋渡しする。
我々は、効果的な行動予測とナビゲーション推論のために、LCMとナビゲーションポリシーネットワークを組み込む方法を利用する。
論文 参考訳(メタデータ) (2024-07-17T07:44:26Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
マルチモーダル大規模言語モデル(MLLM)の強化を目的としたMKS2という手法を提案する。
具体的には、LLMの内部ブロックに組み込まれたコンポーネントであるModular Visual Memoryを導入し、オープンワールドの視覚情報を効率的に保存するように設計されている。
実験により,MKS2は物理的・常識的な知識を必要とする文脈において,LLMの推論能力を大幅に増強することが示された。
論文 参考訳(メタデータ) (2023-11-27T12:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。