Incorporating Like-Minded Peers to Overcome Friend Data Sparsity in Session-Based Social Recommendations
- URL: http://arxiv.org/abs/2409.02702v2
- Date: Sat, 7 Sep 2024 00:40:09 GMT
- Title: Incorporating Like-Minded Peers to Overcome Friend Data Sparsity in Session-Based Social Recommendations
- Authors: Chunyan An, Yunhan Li, Qiang Yang, Winston K. G. Seah, Zhixu Li, Conghao Yang,
- Abstract summary: This paper introduces the concept of "Like-minded Peers" (LMP)
LMP represents users whose preferences align with the target user's current session based on their historical sessions.
This approach not only alleviates the problem of friend data sparsity but also effectively incorporates users with similar preferences to the target user.
- Score: 27.10643133940311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Session-based Social Recommendation (SSR) leverages social relationships within online networks to enhance the performance of Session-based Recommendation (SR). However, existing SSR algorithms often encounter the challenge of "friend data sparsity". Moreover, significant discrepancies can exist between the purchase preferences of social network friends and those of the target user, reducing the influence of friends relative to the target user's own preferences. To address these challenges, this paper introduces the concept of "Like-minded Peers" (LMP), representing users whose preferences align with the target user's current session based on their historical sessions. This is the first work, to our knowledge, that uses LMP to enhance the modeling of social influence in SSR. This approach not only alleviates the problem of friend data sparsity but also effectively incorporates users with similar preferences to the target user. We propose a novel model named Transformer Encoder with Graph Attention Aggregator Recommendation (TEGAARec), which includes the TEGAA module and the GAT-based social aggregation module. The TEGAA module captures and merges both long-term and short-term interests for target users and LMP users. Concurrently, the GAT-based social aggregation module is designed to aggregate the target users' dynamic interests and social influence in a weighted manner. Extensive experiments on four real-world datasets demonstrate the efficacy and superiority of our proposed model and ablation studies are done to illustrate the contributions of each component in TEGAARec.
Related papers
- SocFedGPT: Federated GPT-based Adaptive Content Filtering System Leveraging User Interactions in Social Networks [5.5997926295092295]
We introduce personalized GPT and Context-based Social Media LLM models, utilizing federated learning for privacy and security.
Four client entities receive a base GPT-2 model and locally collected social media data, with federated aggregation ensuring up-to-date model maintenance.
A quantifying social engagement approach, coupled with matrix factorization techniques, facilitates personalized content suggestions in real-time.
arXiv Detail & Related papers (2024-08-07T20:05:26Z) - Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias [64.73474454254105]
Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users.
Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information.
We propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias.
arXiv Detail & Related papers (2024-05-27T02:45:01Z) - Learning Social Graph for Inactive User Recommendation [50.090904659803854]
LSIR learns an optimal social graph structure for social recommendation, especially for inactive users.
Experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58% on NDCG in inactive user recommendation.
arXiv Detail & Related papers (2024-05-08T03:40:36Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
We propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG)
We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items.
To cope with the data sparsity issue, we devise a novel propagation augmentation layer, which is based on our proposed factorized attention mechanism.
arXiv Detail & Related papers (2022-11-02T01:42:20Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Leveraging Social Influence based on Users Activity Centers for
Point-of-Interest Recommendation [2.896192909215469]
We introduce two levels of friendship based on explicit friendship networks and high check-in overlap between users.
The results show that our proposed model outperforms the state-of-the-art on two real-world datasets.
arXiv Detail & Related papers (2022-01-10T16:46:27Z) - Extracting Attentive Social Temporal Excitation for Sequential
Recommendation [20.51029646194531]
We propose a novel time-aware sequential recommendation framework called Social Temporal Excitation Networks (STEN)
STEN introduces temporal point processes to model the fine-grained impact of friends' behaviors on the user s dynamic interests.
STEN provides event-level recommendation explainability, which is also illustrated experimentally.
arXiv Detail & Related papers (2021-09-28T07:39:31Z) - Dual Side Deep Context-aware Modulation for Social Recommendation [50.59008227281762]
We propose a novel graph neural network to model the social relation and collaborative relation.
On top of high-order relations, a dual side deep context-aware modulation is introduced to capture the friends' information and item attraction.
arXiv Detail & Related papers (2021-03-16T11:08:30Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.