Task-Oriented Communication for Graph Data: A Graph Information Bottleneck Approach
- URL: http://arxiv.org/abs/2409.02728v1
- Date: Wed, 4 Sep 2024 14:01:56 GMT
- Title: Task-Oriented Communication for Graph Data: A Graph Information Bottleneck Approach
- Authors: Shujing Li, Yanhu Wang, Shuaishuai Guo, Chenyuan Feng,
- Abstract summary: This paper introduces a method to extract a smaller, task-focused subgraph that maintains key information while reducing communication overhead.
Our approach utilizes graph neural networks (GNNs) and the graph information bottleneck (GIB) principle to create a compact, informative, and robust graph representation suitable for transmission.
- Score: 12.451324619122405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph data, essential in fields like knowledge representation and social networks, often involves large networks with many nodes and edges. Transmitting these graphs can be highly inefficient due to their size and redundancy for specific tasks. This paper introduces a method to extract a smaller, task-focused subgraph that maintains key information while reducing communication overhead. Our approach utilizes graph neural networks (GNNs) and the graph information bottleneck (GIB) principle to create a compact, informative, and robust graph representation suitable for transmission. The challenge lies in the irregular structure of graph data, making GIB optimization complex. We address this by deriving a tractable variational upper bound for the objective function. Additionally, we propose the VQ-GIB mechanism, integrating vector quantization (VQ) to convert subgraph representations into a discrete codebook sequence, compatible with existing digital communication systems. Our experiments show that this GIB-based method significantly lowers communication costs while preserving essential task-related information. The approach demonstrates robust performance across various communication channels, suitable for both continuous and discrete systems.
Related papers
- HUGE: Huge Unsupervised Graph Embeddings with TPUs [6.108914274067702]
Graph Embedding is a process of creating a continuous representation of nodes in a graph.
A high-performance graph embedding architecture leveraging amounts of high-bandwidth memory is presented.
We verify the embedding space quality on real and synthetic large-scale datasets.
arXiv Detail & Related papers (2023-07-26T20:29:15Z) - ABC: Aggregation before Communication, a Communication Reduction
Framework for Distributed Graph Neural Network Training and Effective
Partition [0.0]
Graph Neural Networks (GNNs) are neural models tailored for graph-structure data and have shown superior performance in learning representations for graph-structured data.
In this paper, we study the communication complexity during distributed GNNs training.
We show that the new partition paradigm is particularly ideal in the case of dynamic graphs where it is infeasible to control the edge placement due to the unknown of the graph-changing process.
arXiv Detail & Related papers (2022-12-11T04:54:01Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Affinity-Aware Graph Networks [9.888383815189176]
Graph Neural Networks (GNNs) have emerged as a powerful technique for learning on relational data.
We explore the use of affinity measures as features in graph neural networks.
We propose message passing networks based on these features and evaluate their performance on a variety of node and graph property prediction tasks.
arXiv Detail & Related papers (2022-06-23T18:51:35Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Distributed Graph Learning with Smooth Data Priors [61.405131495287755]
We propose a novel distributed graph learning algorithm, which permits to infer a graph from signal observations on the nodes.
Our results show that the distributed approach has a lower communication cost than a centralised algorithm without compromising the accuracy in the inferred graph.
arXiv Detail & Related papers (2021-12-11T00:52:02Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.