論文の概要: CMM-Math: A Chinese Multimodal Math Dataset To Evaluate and Enhance the Mathematics Reasoning of Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2409.02834v3
- Date: Fri, 1 Nov 2024 02:21:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 23:34:03.720001
- Title: CMM-Math: A Chinese Multimodal Math Dataset To Evaluate and Enhance the Mathematics Reasoning of Large Multimodal Models
- Title(参考訳): CMM-Math:大規模マルチモーダルモデルの数学推論の評価と拡張を目的とした中国のマルチモーダル数学データセット
- Authors: Wentao Liu, Qianjun Pan, Yi Zhang, Zhuo Liu, Ji Wu, Jie Zhou, Aimin Zhou, Qin Chen, Bo Jiang, Liang He,
- Abstract要約: 我々は,LMMの数学的推論を評価するために,中国のマルチモーダル数学(CMM-Math)データセットをリリースする。
CMM-Mathには28,000以上の高品質のサンプルがあり、中国の小学校から高校まで12学年の詳細な解がある。
複数画像とテキストセグメントの混合入力による問題に対処するマルチモーダル数学的LMM(Math-LMM)を提案する。
- 参考スコア(独自算出の注目度): 35.9843681685377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人間の知能の基礎となる数学的推論において有望な結果を得た。
従来の研究は、テキスト数学推論データセット(例えば、MATH、GSM8K)に基づくLLMの性能改善と測定に重点を置いていた。
最近、数人の研究者が大規模なマルチモーダルモデル(LMM)の有効性を評価するために、英語のマルチモーダル数学データセット(例えば、MATHVISTA、MATH-V)をリリースした。
本稿では,LMMの数学的推論を評価するために,ベンチマークやトレーニング部品を含む中国のマルチモーダル数学(CMM-Math)データセットをリリースする。
CMM-Mathには28,000以上の高品質なサンプルが含まれており、中国の小学校から高校まで、12段階の詳細なソリューションを備えた様々な問題タイプ(例えば、多重選択、ブランクの補充など)が特徴である。
特に、視覚的コンテキストは質問や意見の中に存在し、このデータセットをより困難にします。
包括的分析により、CMM-Mathデータセット上の最先端のLMMが課題に直面しており、LMM開発におけるさらなる改善の必要性を強調している。
また,複数画像とテキストセグメントの混合入力による問題に対処するマルチモーダル数学的LMM(Math-LMM)を提案する。
基礎的な事前学習、基礎的な微調整、数学的微調整を含む3つの段階を用いてモデルを訓練する。
より広範な実験により,本モデルは3つのマルチモーダルな数学的データセット上でのSOTA LMMと比較することにより,数学推論性能を効果的に向上することが示された。
関連論文リスト
- InfiMM-WebMath-40B: Advancing Multimodal Pre-Training for Enhanced Mathematical Reasoning [58.7966588457529]
InfiMM-WebMath-40Bは、インターリーブされた画像テキスト文書の高品質なデータセットである。
ウェブページは2400万、画像URLは8500万、テキストトークンは400億だ。
テキストのみのベンチマークでは,400億トークンしか利用していないにもかかわらず,データセットは1.3Bモデルの性能を大幅に向上させることが示された。
私たちのモデルは、MathVerseやWe-Mathといったマルチモーダルな数学ベンチマーク上で、オープンソースモデルの中で新しい最先端のモデルを設定しました。
論文 参考訳(メタデータ) (2024-09-19T08:41:21Z) - Math-PUMA: Progressive Upward Multimodal Alignment to Enhance Mathematical Reasoning [5.9767694994869425]
MLLM(Multimodal Large Language Models)は、テキストベースの数学的問題の解法として優れている。
彼らは、主に自然の風景画像で訓練されているため、数学的図形に苦しむ。
本研究では,プログレッシブ・アップワード・マルチモーダルアライメントに着目したMath-PUMAを提案する。
論文 参考訳(メタデータ) (2024-08-16T10:11:05Z) - MathScape: Evaluating MLLMs in multimodal Math Scenarios through a Hierarchical Benchmark [29.9945601202065]
我々は,視覚情報とテキスト情報の組み合わせの理解と適用を強調する新しいベンチマークであるMathScapeを提案する。
MathScapeは、MLLMの理論的理解と応用能力を評価し、写真に基づく数学問題シナリオを評価するように設計されている。
我々は11の高度MLLMに対して多次元評価を行い、最も洗練されたモデルでさえベンチマークが困難であることを明らかにした。
論文 参考訳(メタデータ) (2024-08-14T13:23:43Z) - Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models [62.815222721144636]
我々は、LLaVA-1.5ベースのMathV360Kで微調整されたモデルであるMath-LLaVAを紹介する。
この手法はLLaVA-1.5のマルチモーダル数学的推論能力を著しく改善する。
Math-LLaVAは、MMMUベンチマークで大幅に改善された一般化性を示している。
論文 参考訳(メタデータ) (2024-06-25T05:43:21Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
我々は,11番目と12番目の標準数学 NCERT 教科書から得られた数学データセット "MathQuest" を紹介する。
LLaMA-2, WizardMath, MAmmoTHの3つの大きな言語モデルを用いた微調整実験を行った。
この3つのモデルのうち,MAmmoTH-13Bが最も熟練したモデルとして登場し,提示された数理問題の解法において,最高レベルの能力を達成した。
論文 参考訳(メタデータ) (2024-04-19T08:45:42Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset [33.65525875690291]
実数競合から得られる視覚的コンテキストを持つ3,040個の高品質な数学問題の集合であるMATH-Visionデータセットを提示する。
広汎な実験により,MATH-Vにおける現在のLMMと人的性能の顕著な差が明らかになった。
我々の詳細な分類は、LMMの完全なエラー分析を可能にし、将来の研究開発のガイドとなる貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-02-22T18:56:38Z) - InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning [98.53491178426492]
InternLM2から事前学習を継続するILMs InternLM-Mathをオープンソースとして公開する。
我々は、連鎖推論、報酬モデリング、形式推論、データ拡張、コードインタプリタを、統一されたSeq2seqフォーマットで統一する。
我々の事前学習モデルは、微調整なしでMiniF2Fテストセットで30.3を達成する。
論文 参考訳(メタデータ) (2024-02-09T11:22:08Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
複雑なマルチモーダルタスクにおける大規模マルチモーダルモデル(LMM)を評価する評価ベンチマークであるMM-Vetを提案する。
近年のLMMは、黒板に書かれた数学の問題を解くこと、ニュース画像の出来事や有名人を推論すること、視覚的ジョークを説明することなど、様々な興味深い能力を示している。
論文 参考訳(メタデータ) (2023-08-04T17:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。