CMM-Math: A Chinese Multimodal Math Dataset To Evaluate and Enhance the Mathematics Reasoning of Large Multimodal Models
- URL: http://arxiv.org/abs/2409.02834v3
- Date: Fri, 1 Nov 2024 02:21:13 GMT
- Title: CMM-Math: A Chinese Multimodal Math Dataset To Evaluate and Enhance the Mathematics Reasoning of Large Multimodal Models
- Authors: Wentao Liu, Qianjun Pan, Yi Zhang, Zhuo Liu, Ji Wu, Jie Zhou, Aimin Zhou, Qin Chen, Bo Jiang, Liang He,
- Abstract summary: We release a Chinese multimodal math (CMM-Math) dataset to evaluate and enhance the mathematical reasoning of LMMs.
CMM-Math contains over 28,000 high-quality samples with detailed solutions across 12 grade levels from elementary to high school in China.
We propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments.
- Score: 35.9843681685377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.
Related papers
- InfiMM-WebMath-40B: Advancing Multimodal Pre-Training for Enhanced Mathematical Reasoning [58.7966588457529]
InfiMM-WebMath-40B is a high-quality dataset of interleaved image-text documents.
It comprises 24 million web pages, 85 million associated image URLs, and 40 billion text tokens, all meticulously extracted and filtered from CommonCrawl.
Our evaluations on text-only benchmarks show that, despite utilizing only 40 billion tokens, our dataset significantly enhances the performance of our 1.3B model.
Our models set a new state-of-the-art among open-source models on multi-modal math benchmarks such as MathVerse and We-Math.
arXiv Detail & Related papers (2024-09-19T08:41:21Z) - Math-PUMA: Progressive Upward Multimodal Alignment to Enhance Mathematical Reasoning [5.9767694994869425]
Multimodal Large Language Models (MLLMs) excel in solving text-based mathematical problems.
They struggle with mathematical diagrams since they are primarily trained on natural scene images.
We propose Math-PUMA, a methodology focused on Progressive Upward Multimodal Alignment.
arXiv Detail & Related papers (2024-08-16T10:11:05Z) - MathScape: Evaluating MLLMs in multimodal Math Scenarios through a Hierarchical Benchmark [29.9945601202065]
We propose MathScape, a new benchmark that emphasizes the understanding and application of combined visual and textual information.
MathScape is designed to evaluate photo-based math problem scenarios, assessing the theoretical understanding and application ability of MLLMs.
We conduct a multi-dimensional evaluation on 11 advanced MLLMs, revealing that our benchmark is challenging even for the most sophisticated models.
arXiv Detail & Related papers (2024-08-14T13:23:43Z) - Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models [62.815222721144636]
We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K.
This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5.
Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark.
arXiv Detail & Related papers (2024-06-25T05:43:21Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
We introduce an extensive mathematics dataset called "MathQuest" sourced from the 11th and 12th standard Mathematics NCERT textbooks.
We conduct fine-tuning experiments with three prominent large language models: LLaMA-2, WizardMath, and MAmmoTH.
Our experiments reveal that among the three models, MAmmoTH-13B emerges as the most proficient, achieving the highest level of competence in solving the presented mathematical problems.
arXiv Detail & Related papers (2024-04-19T08:45:42Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset [33.65525875690291]
We present the MATH-Vision dataset, a collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions.
Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on MATH-V.
Our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development.
arXiv Detail & Related papers (2024-02-22T18:56:38Z) - InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning [98.53491178426492]
We open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2.
We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format.
Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning.
arXiv Detail & Related papers (2024-02-09T11:22:08Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks.
Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes.
arXiv Detail & Related papers (2023-08-04T17:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.