Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks
- URL: http://arxiv.org/abs/2404.13099v1
- Date: Fri, 19 Apr 2024 08:45:42 GMT
- Title: Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks
- Authors: Avinash Anand, Mohit Gupta, Kritarth Prasad, Navya Singla, Sanjana Sanjeev, Jatin Kumar, Adarsh Raj Shivam, Rajiv Ratn Shah,
- Abstract summary: We introduce an extensive mathematics dataset called "MathQuest" sourced from the 11th and 12th standard Mathematics NCERT textbooks.
We conduct fine-tuning experiments with three prominent large language models: LLaMA-2, WizardMath, and MAmmoTH.
Our experiments reveal that among the three models, MAmmoTH-13B emerges as the most proficient, achieving the highest level of competence in solving the presented mathematical problems.
- Score: 34.09857430966818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid progress in the field of natural language processing (NLP) systems and the expansion of large language models (LLMs) have opened up numerous opportunities in the field of education and instructional methods. These advancements offer the potential for tailored learning experiences and immediate feedback, all delivered through accessible and cost-effective services. One notable application area for this technological advancement is in the realm of solving mathematical problems. Mathematical problem-solving not only requires the ability to decipher complex problem statements but also the skill to perform precise arithmetic calculations at each step of the problem-solving process. However, the evaluation of the arithmetic capabilities of large language models remains an area that has received relatively little attention. In response, we introduce an extensive mathematics dataset called "MathQuest" sourced from the 11th and 12th standard Mathematics NCERT textbooks. This dataset encompasses mathematical challenges of varying complexity and covers a wide range of mathematical concepts. Utilizing this dataset, we conduct fine-tuning experiments with three prominent LLMs: LLaMA-2, WizardMath, and MAmmoTH. These fine-tuned models serve as benchmarks for evaluating their performance on our dataset. Our experiments reveal that among the three models, MAmmoTH-13B emerges as the most proficient, achieving the highest level of competence in solving the presented mathematical problems. Consequently, MAmmoTH-13B establishes itself as a robust and dependable benchmark for addressing NCERT mathematics problems.
Related papers
- HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
We introduce HARDMath, a dataset featuring challenging applied mathematics problems that require analytical approximation techniques.
Our framework auto-generates a large number of problems with solutions validated against numerical ground truths.
We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts.
arXiv Detail & Related papers (2024-10-13T20:09:41Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - MathLearner: A Large Language Model Agent Framework for Learning to Solve Mathematical Problems [0.936726079405677]
We propose an agent framework for learning to solve mathematical problems based on inductive reasoning.
By emulating the human learning process of generalization of learned information, this framework has great performance in the mathematical reasoning process.
Our model can be used as a personalised learning aid, thus reducing the inequality of educational resources.
arXiv Detail & Related papers (2024-08-03T13:28:19Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities.
This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset.
arXiv Detail & Related papers (2024-06-26T13:02:35Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMath is a fine-grained mathematical evaluation benchmark dataset for assessing Chinese Large Language Models (LLMs)
FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are divided into 17 categories of math word problems.
All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems.
arXiv Detail & Related papers (2024-03-12T15:32:39Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving.
However, their proficiency in solving mathematical problems remains inadequate.
We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data.
arXiv Detail & Related papers (2024-03-05T11:42:59Z) - MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning [2.9104279358536647]
We present MathSensei, a tool-augmented large language model for mathematical reasoning.
We study the complementary benefits of the tools - knowledge retriever (Bing Web Search), program generator + executor (Python), and symbolic equation solver (Wolfram-Alpha API)
arXiv Detail & Related papers (2024-02-27T05:50:35Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
We review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade.
Recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning.
arXiv Detail & Related papers (2022-12-20T18:46:16Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model(PLM)
Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement.
We design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses.
arXiv Detail & Related papers (2022-06-13T17:03:52Z) - Measuring Mathematical Problem Solving With the MATH Dataset [55.4376028963537]
We introduce MATH, a dataset of 12,500 challenging competition mathematics problems.
Each problem has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations.
We also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics.
arXiv Detail & Related papers (2021-03-05T18:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.