Benchmarking Spurious Bias in Few-Shot Image Classifiers
- URL: http://arxiv.org/abs/2409.02882v1
- Date: Wed, 4 Sep 2024 17:07:46 GMT
- Title: Benchmarking Spurious Bias in Few-Shot Image Classifiers
- Authors: Guangtao Zheng, Wenqian Ye, Aidong Zhang,
- Abstract summary: Few-shot image classifiers show reliance on spurious correlations between classes and spurious attributes, known as spurious bias.
We propose FewSTAB to fairly demonstrate and quantify varied degrees of robustness of few-shot classifiers to spurious bias.
FewSTAB creates few-shot evaluation tasks with biased attributes so that using them for predictions can demonstrate poor performance.
- Score: 26.544938760265136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot image classifiers are designed to recognize and classify new data with minimal supervision and limited data but often show reliance on spurious correlations between classes and spurious attributes, known as spurious bias. Spurious correlations commonly hold in certain samples and few-shot classifiers can suffer from spurious bias induced from them. There is an absence of an automatic benchmarking system to assess the robustness of few-shot classifiers against spurious bias. In this paper, we propose a systematic and rigorous benchmark framework, termed FewSTAB, to fairly demonstrate and quantify varied degrees of robustness of few-shot classifiers to spurious bias. FewSTAB creates few-shot evaluation tasks with biased attributes so that using them for predictions can demonstrate poor performance. To construct these tasks, we propose attribute-based sample selection strategies based on a pre-trained vision-language model, eliminating the need for manual dataset curation. This allows FewSTAB to automatically benchmark spurious bias using any existing test data. FewSTAB offers evaluation results in a new dimension along with a new design guideline for building robust classifiers. Moreover, it can benchmark spurious bias in varied degrees and enable designs for varied degrees of robustness. Its effectiveness is demonstrated through experiments on ten few-shot learning methods across three datasets. We hope our framework can inspire new designs of robust few-shot classifiers. Our code is available at https://github.com/gtzheng/FewSTAB.
Related papers
- Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair [36.221761997349795]
Deep neural networks rely on bias attributes that are spuriously correlated with a target class in the presence of dataset bias.
This paper proposes a method that provides the model with explicit spatial guidance that indicates the region of intrinsic features.
Experiments demonstrate that our method achieves state-of-the-art performance on synthetic and real-world datasets with various levels of bias severity.
arXiv Detail & Related papers (2024-04-30T04:13:14Z) - Rethinking Dense Retrieval's Few-Shot Ability [24.86681340512899]
Few-shot dense retrieval aims to generalize to novel search scenarios by learning a few samples.
Current methods often resort to random sampling from supervised datasets to create "few-data" setups.
We propose a customized FewDR dataset and a unified evaluation benchmark.
arXiv Detail & Related papers (2023-04-12T13:20:16Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Ortho-Shot: Low Displacement Rank Regularization with Data Augmentation
for Few-Shot Learning [23.465747123791772]
In few-shot classification, the primary goal is to learn representations that generalize well for novel classes.
We propose an efficient low displacement rank (LDR) regularization strategy termed Ortho-Shot.
arXiv Detail & Related papers (2021-10-18T14:58:36Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.