Topological Methods in Machine Learning: A Tutorial for Practitioners
- URL: http://arxiv.org/abs/2409.02901v1
- Date: Wed, 4 Sep 2024 17:44:52 GMT
- Title: Topological Methods in Machine Learning: A Tutorial for Practitioners
- Authors: Baris Coskunuzer, Cüneyt Gürcan Akçora,
- Abstract summary: Topological Machine Learning (TML) is an emerging field that leverages techniques from algebraic topology to analyze complex data structures.
This tutorial provides a comprehensive introduction to two key TML techniques, persistent homology and the Mapper algorithm.
To enhance accessibility, we adopt a data-centric approach, enabling readers to gain hands-on experience applying these techniques to relevant tasks.
- Score: 4.297070083645049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological Machine Learning (TML) is an emerging field that leverages techniques from algebraic topology to analyze complex data structures in ways that traditional machine learning methods may not capture. This tutorial provides a comprehensive introduction to two key TML techniques, persistent homology and the Mapper algorithm, with an emphasis on practical applications. Persistent homology captures multi-scale topological features such as clusters, loops, and voids, while the Mapper algorithm creates an interpretable graph summarizing high-dimensional data. To enhance accessibility, we adopt a data-centric approach, enabling readers to gain hands-on experience applying these techniques to relevant tasks. We provide step-by-step explanations, implementations, hands-on examples, and case studies to demonstrate how these tools can be applied to real-world problems. The goal is to equip researchers and practitioners with the knowledge and resources to incorporate TML into their work, revealing insights often hidden from conventional machine learning methods. The tutorial code is available at https://github.com/cakcora/TopologyForML
Related papers
- Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications [17.571124565519263]
Book covers state-of-the-art advancements in machine learning and deep learning.
Focuses on convolutional neural networks (CNNs), YOLO architectures, and transformer-based approaches like DETR.
Book also delves into the integration of artificial intelligence (AI) techniques and large language models for enhanced object detection.
arXiv Detail & Related papers (2024-10-21T02:10:49Z) - Extraction of Research Objectives, Machine Learning Model Names, and Dataset Names from Academic Papers and Analysis of Their Interrelationships Using LLM and Network Analysis [0.0]
This study proposes a methodology extracting tasks, machine learning methods, and dataset names from scientific papers.
The proposed method's expression extraction performance, when using Llama3, achieves an F-score exceeding 0.8 across various categories.
Benchmarking results on financial domain papers have demonstrated the effectiveness of this method.
arXiv Detail & Related papers (2024-08-22T03:10:52Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Many or Few Samples? Comparing Transfer, Contrastive and Meta-Learning
in Encrypted Traffic Classification [68.19713459228369]
We compare transfer learning, meta-learning and contrastive learning against reference Machine Learning (ML) tree-based and monolithic DL models.
We show that (i) using large datasets we can obtain more general representations, (ii) contrastive learning is the best methodology.
While ML tree-based cannot handle large tasks but fits well small tasks, by means of reusing learned representations, DL methods are reaching tree-based models performance also for small tasks.
arXiv Detail & Related papers (2023-05-21T11:20:49Z) - What and How of Machine Learning Transparency: Building Bespoke
Explainability Tools with Interoperable Algorithmic Components [77.87794937143511]
This paper introduces a collection of hands-on training materials for explaining data-driven predictive models.
These resources cover the three core building blocks of this technique: interpretable representation composition, data sampling and explanation generation.
arXiv Detail & Related papers (2022-09-08T13:33:25Z) - A Topological Approach for Semi-Supervised Learning [0.0]
We present new semi-supervised learning methods based on techniques from Topological Data Analysis (TDA)
In particular, we have created two semi-supervised learning methods following two different topological approaches.
The results show that the methods developed in this work outperform both the results obtained with models trained with only manually labelled data, and those obtained with classical semi-supervised learning methods.
arXiv Detail & Related papers (2022-05-19T15:23:39Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - An analysis on the use of autoencoders for representation learning:
fundamentals, learning task case studies, explainability and challenges [11.329636084818778]
In many machine learning tasks, learning a good representation of the data can be the key to building a well-performant solution.
We present a series of learning tasks: data embedding for visualization, image denoising, semantic hashing, detection of abnormal behaviors and instance generation.
A solution is proposed for each task employing autoencoders as the only learning method.
arXiv Detail & Related papers (2020-05-21T08:41:57Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
We provide fast, sample-efficient algorithms to address the dual challenges of learning a common set of features from multiple, related tasks, and transferring this knowledge to new, unseen tasks.
We also provide information-theoretic lower bounds on the sample complexity of learning these linear features.
arXiv Detail & Related papers (2020-02-26T18:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.