Can LVLMs Obtain a Driver's License? A Benchmark Towards Reliable AGI for Autonomous Driving
- URL: http://arxiv.org/abs/2409.02914v1
- Date: Wed, 4 Sep 2024 17:52:43 GMT
- Title: Can LVLMs Obtain a Driver's License? A Benchmark Towards Reliable AGI for Autonomous Driving
- Authors: Yuhang Lu, Yichen Yao, Jiadong Tu, Jiangnan Shao, Yuexin Ma, Xinge Zhu,
- Abstract summary: We propose IDKB, a large-scale dataset containing over one million data items collected from various countries.
Much like the process of obtaining a driver's license, IDKB encompasses nearly all the explicit knowledge needed for driving from theory to practice.
- Score: 24.485164073626674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) have recently garnered significant attention, with many efforts aimed at harnessing their general knowledge to enhance the interpretability and robustness of autonomous driving models. However, LVLMs typically rely on large, general-purpose datasets and lack the specialized expertise required for professional and safe driving. Existing vision-language driving datasets focus primarily on scene understanding and decision-making, without providing explicit guidance on traffic rules and driving skills, which are critical aspects directly related to driving safety. To bridge this gap, we propose IDKB, a large-scale dataset containing over one million data items collected from various countries, including driving handbooks, theory test data, and simulated road test data. Much like the process of obtaining a driver's license, IDKB encompasses nearly all the explicit knowledge needed for driving from theory to practice. In particular, we conducted comprehensive tests on 15 LVLMs using IDKB to assess their reliability in the context of autonomous driving and provided extensive analysis. We also fine-tuned popular models, achieving notable performance improvements, which further validate the significance of our dataset. The project page can be found at: \url{https://4dvlab.github.io/project_page/idkb.html}
Related papers
- Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives [56.528835143531694]
We introduce DriveBench, a benchmark dataset designed to evaluate Vision-Language Models (VLMs)
Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding.
We propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding.
arXiv Detail & Related papers (2025-01-07T18:59:55Z) - AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving [106.0319745724181]
We introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs)
We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios.
Our evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats.
arXiv Detail & Related papers (2024-12-19T18:59:33Z) - DriveMM: All-in-One Large Multimodal Model for Autonomous Driving [63.882827922267666]
DriveMM is a large multimodal model designed to process diverse data inputs, such as images and multi-view videos, while performing a broad spectrum of autonomous driving tasks.
We conduct evaluations on six public benchmarks and undertake zero-shot transfer on an unseen dataset, where DriveMM achieves state-of-the-art performance across all tasks.
arXiv Detail & Related papers (2024-12-10T17:27:32Z) - CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving [1.727597257312416]
CoVLA (Comprehensive Vision-Language-Action) dataset comprises real-world driving videos spanning more than 80 hours.
This dataset establishes a framework for robust, interpretable, and data-driven autonomous driving systems.
arXiv Detail & Related papers (2024-08-19T09:53:49Z) - Multi-Frame, Lightweight & Efficient Vision-Language Models for Question Answering in Autonomous Driving [0.0]
We develop an efficient, lightweight, multi-frame vision language model which performs Visual Question Answering for autonomous driving.
In comparison to previous approaches, EM-VLM4AD requires at least 10 times less memory and floating point operations.
arXiv Detail & Related papers (2024-03-28T21:18:33Z) - DriveLM: Driving with Graph Visual Question Answering [57.51930417790141]
We study how vision-language models (VLMs) trained on web-scale data can be integrated into end-to-end driving systems.
We propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving.
arXiv Detail & Related papers (2023-12-21T18:59:12Z) - On the Road with GPT-4V(ision): Early Explorations of Visual-Language
Model on Autonomous Driving [37.617793990547625]
This report provides an exhaustive evaluation of the latest state-of-the-art VLM, GPT-4V.
We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver.
Our findings reveal that GPT-4V demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems.
arXiv Detail & Related papers (2023-11-09T12:58:37Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.