論文の概要: CLUE: Concept-Level Uncertainty Estimation for Large Language Models
- arxiv url: http://arxiv.org/abs/2409.03021v1
- Date: Wed, 4 Sep 2024 18:27:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 00:59:44.095376
- Title: CLUE: Concept-Level Uncertainty Estimation for Large Language Models
- Title(参考訳): CLUE:大規模言語モデルにおける概念レベル不確実性推定
- Authors: Yu-Hsiang Wang, Andrew Bai, Che-Ping Tsai, Cho-Jui Hsieh,
- Abstract要約: 大規模言語モデル(LLM)のための概念レベル不確実性推定のための新しいフレームワークを提案する。
LLMを利用して、出力シーケンスを概念レベルの表現に変換し、シーケンスを個別の概念に分解し、各概念の不確かさを個別に測定する。
我々は,文レベルの不確実性と比較して,CLUEがより解釈可能な不確実性推定結果を提供できることを示す実験を行った。
- 参考スコア(独自算出の注目度): 49.92690111618016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable proficiency in various natural language generation (NLG) tasks. Previous studies suggest that LLMs' generation process involves uncertainty. However, existing approaches to uncertainty estimation mainly focus on sequence-level uncertainty, overlooking individual pieces of information within sequences. These methods fall short in separately assessing the uncertainty of each component in a sequence. In response, we propose a novel framework for Concept-Level Uncertainty Estimation (CLUE) for LLMs. We leverage LLMs to convert output sequences into concept-level representations, breaking down sequences into individual concepts and measuring the uncertainty of each concept separately. We conduct experiments to demonstrate that CLUE can provide more interpretable uncertainty estimation results compared with sentence-level uncertainty, and could be a useful tool for various tasks such as hallucination detection and story generation.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語生成(NLG)タスクにおいて顕著な熟練性を示している。
以前の研究では、LLMの生成過程が不確実性を伴うことが示唆されている。
しかし、既存の不確実性推定へのアプローチは、主にシーケンス内の個々の情報を見渡すシーケンスレベルの不確実性に焦点を当てている。
これらの方法は、シーケンス内の各コンポーネントの不確かさを別々に評価するのに不足する。
そこで本研究では,LLMのための概念レベル不確実性推定(CLUE)のための新しいフレームワークを提案する。
LLMを利用して、出力シーケンスを概念レベルの表現に変換し、シーケンスを個別の概念に分解し、各概念の不確かさを個別に測定する。
我々は,文レベルの不確実性と比較して,CLUEがより解釈可能な不確実性推定結果を提供できることを示す実験を行い,幻覚検出やストーリー生成といった様々なタスクに有用なツールとなることを実証した。
関連論文リスト
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
大規模言語モデル(LLM)の不確実性は、安全性と信頼性が重要であるアプリケーションには不可欠である。
ホワイトボックスとブラックボックス LLM における不確実性評価手法である Kernel Language Entropy (KLE) を提案する。
論文 参考訳(メタデータ) (2024-05-30T12:42:05Z) - Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space [14.715989394285238]
既存のLarge Language Models (LLM) には、ユーザが生成するレスポンスごとに不確実性/信頼度を計測するための固有の機能がない。
本稿では,これらの課題に対処する新しい枠組みを提案する。
意味密度は、意味空間における確率分布の観点から各応答の不確かさ/自信情報を抽出する。
論文 参考訳(メタデータ) (2024-05-22T17:13:49Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
言語モデル(LM)の最近の進歩により、複雑なNLPタスクの品質が大幅に向上した。
Cascadingは、より好ましいコスト品質のトレードオフを達成するためのシンプルな戦略を提供する。
トークンレベルの不確実性を学習後遅延ルールに組み込むことで,単純な集約戦略を著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-04-15T21:02:48Z) - SPUQ: Perturbation-Based Uncertainty Quantification for Large Language
Models [9.817185255633758]
大規模言語モデル(LLM)がますます普及し、顕著なテキスト生成機能を提供している。
プレッシャーの課題は、自信を持って間違った予測をする傾向にある。
本稿では,浮腫とてんかんの両不確実性に対処するために,新しいUQ法を提案する。
その結果,モデルキャリブレーションは大幅に改善し,予測誤差(ECE)は平均50%減少した。
論文 参考訳(メタデータ) (2024-03-04T21:55:22Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Quantifying Uncertainty in Natural Language Explanations of Large
Language Models [29.34960984639281]
大規模言語モデル (LLM) は、高スループット自然言語処理 (NLP) アプリケーションのための強力なツールとして、ますます使われている。
生成された説明の不確かさを定量化するために、$textitVerbalized Uncertainty$と$textitProbing Uncertainty$という2つの新しいメトリクスを提案します。
ベンチマークデータセットの実証分析により、言語化された不確実性は説明の信頼性の信頼できる見積りではないことが判明した。
論文 参考訳(メタデータ) (2023-11-06T21:14:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。