An Introduction to Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2409.03052v1
- Date: Wed, 4 Sep 2024 19:54:40 GMT
- Title: An Introduction to Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning
- Authors: Christopher Amato,
- Abstract summary: This text is an introduction to CTDE in cooperative MARL.
It is meant to explain the setting, basic concepts, and common methods.
- Score: 14.873907857806358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning (MARL) has exploded in popularity in recent years. Many approaches have been developed but they can be divided into three main types: centralized training and execution (CTE), centralized training for decentralized execution (CTDE), and Decentralized training and execution (DTE). CTDE methods are the most common as they can use centralized information during training but execute in a decentralized manner -- using only information available to that agent during execution. CTDE is the only paradigm that requires a separate training phase where any available information (e.g., other agent policies, underlying states) can be used. As a result, they can be more scalable than CTE methods, do not require communication during execution, and can often perform well. CTDE fits most naturally with the cooperative case, but can be potentially applied in competitive or mixed settings depending on what information is assumed to be observed. This text is an introduction to CTDE in cooperative MARL. It is meant to explain the setting, basic concepts, and common methods. It does not cover all work in CTDE MARL as the subarea is quite extensive. I have included work that I believe is important for understanding the main concepts in the subarea and apologize to those that I have omitted.
Related papers
- An Introduction to Decentralized Training and Execution in Cooperative Multi-Agent Reinforcement Learning [14.873907857806358]
Multi-agent reinforcement learning (MARL) has exploded in popularity in recent years.
Decentralized training and execution methods make the fewest assumptions and are often simple to implement.
This text is an introduction to the field of decentralized, cooperative MARL.
arXiv Detail & Related papers (2024-05-10T00:50:08Z) - Is Centralized Training with Decentralized Execution Framework
Centralized Enough for MARL? [27.037348104661497]
Training with Decentralized Execution is a popular framework for cooperative Multi-Agent Reinforcement Learning.
We introduce a novel Advising and Decentralized Pruning (CADP) framework for multi-agent reinforcement learning.
arXiv Detail & Related papers (2023-05-27T03:15:24Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
We propose a new method called MAMBA which utilizes Model-Based Reinforcement Learning (MBRL) to further leverage centralized training in cooperative environments.
We argue that communication between agents is enough to sustain a world model for each agent during execution phase while imaginary rollouts can be used for training, removing the necessity to interact with the environment.
arXiv Detail & Related papers (2022-05-25T08:35:00Z) - CTDS: Centralized Teacher with Decentralized Student for Multi-Agent
Reinforcement Learning [114.69155066932046]
This work proposes a novel.
Teacher with Decentralized Student (C TDS) framework, which consists of a teacher model and a student model.
Specifically, the teacher model allocates the team reward by learning individual Q-values conditioned on global observation.
The student model utilizes the partial observations to approximate the Q-values estimated by the teacher model.
arXiv Detail & Related papers (2022-03-16T06:03:14Z) - Mean-Field Multi-Agent Reinforcement Learning: A Decentralized Network
Approach [6.802025156985356]
This paper proposes a framework called localized training and decentralized execution to study MARL with network of states.
The key idea is to utilize the homogeneity of agents and regroup them according to their states, thus the formulation of a networked Markov decision process.
arXiv Detail & Related papers (2021-08-05T16:52:36Z) - Distributed Heuristic Multi-Agent Path Finding with Communication [7.854890646114447]
Multi-Agent Path Finding (MAPF) is essential to large-scale robotic systems.
Recent methods have applied reinforcement learning (RL) to learn decentralized polices in partially observable environments.
This paper combines communication with deep Q-learning to provide a novel learning based method for MAPF.
arXiv Detail & Related papers (2021-06-21T18:50:58Z) - Secure Distributed Training at Scale [65.7538150168154]
Training in presence of peers requires specialized distributed training algorithms with Byzantine tolerance.
We propose a novel protocol for secure (Byzantine-tolerant) decentralized training that emphasizes communication efficiency.
arXiv Detail & Related papers (2021-06-21T17:00:42Z) - Consensus Control for Decentralized Deep Learning [72.50487751271069]
Decentralized training of deep learning models enables on-device learning over networks, as well as efficient scaling to large compute clusters.
We show in theory that when the training consensus distance is lower than a critical quantity, decentralized training converges as fast as the centralized counterpart.
Our empirical insights allow the principled design of better decentralized training schemes that mitigate the performance drop.
arXiv Detail & Related papers (2021-02-09T13:58:33Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning [55.20040781688844]
QMIX is a novel value-based method that can train decentralised policies in a centralised end-to-end fashion.
We propose the StarCraft Multi-Agent Challenge (SMAC) as a new benchmark for deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2020-03-19T16:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.