RoboKoop: Efficient Control Conditioned Representations from Visual Input in Robotics using Koopman Operator
- URL: http://arxiv.org/abs/2409.03107v1
- Date: Wed, 4 Sep 2024 22:14:59 GMT
- Title: RoboKoop: Efficient Control Conditioned Representations from Visual Input in Robotics using Koopman Operator
- Authors: Hemant Kumawat, Biswadeep Chakraborty, Saibal Mukhopadhyay,
- Abstract summary: We introduce a Contrastive Spectral Koopman Embedding network that allows us to learn efficient linearized visual representations from the agent's visual data in a high dimensional latent space.
Our method enhances stability and control in gradient dynamics over time, significantly outperforming existing approaches.
- Score: 14.77553682217217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing agents that can perform complex control tasks from high-dimensional observations is a core ability of autonomous agents that requires underlying robust task control policies and adapting the underlying visual representations to the task. Most existing policies need a lot of training samples and treat this problem from the lens of two-stage learning with a controller learned on top of pre-trained vision models. We approach this problem from the lens of Koopman theory and learn visual representations from robotic agents conditioned on specific downstream tasks in the context of learning stabilizing control for the agent. We introduce a Contrastive Spectral Koopman Embedding network that allows us to learn efficient linearized visual representations from the agent's visual data in a high dimensional latent space and utilizes reinforcement learning to perform off-policy control on top of the extracted representations with a linear controller. Our method enhances stability and control in gradient dynamics over time, significantly outperforming existing approaches by improving efficiency and accuracy in learning task policies over extended horizons.
Related papers
- DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction [4.813546138483559]
Reinforcement Learning (RL) algorithms can learn robotic control tasks from visual observations, but they often require a large amount of data.
In this paper, we explore how the agent's knowledge of its shape can improve the sample efficiency of visual RL methods.
We propose a novel method, Disentangled Environment and Agent Representations, that uses the segmentation mask of the agent as supervision.
arXiv Detail & Related papers (2024-06-30T09:15:21Z) - Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control [73.6361029556484]
Embodied AI agents require a fine-grained understanding of the physical world mediated through visual and language inputs.
We consider pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts.
We show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark.
arXiv Detail & Related papers (2024-05-09T15:39:54Z) - A Reinforcement Learning Approach for Robotic Unloading from Visual
Observations [1.420663986837751]
In this work, we focus on a robotic unloading problem from visual observations.
We propose a hierarchical controller structure that combines a high-level decision-making module with classical motion control.
Our experiments demonstrate that both these elements play a crucial role in achieving improved learning performance.
arXiv Detail & Related papers (2023-09-12T22:22:28Z) - TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning [73.53576440536682]
We introduce TACO: Temporal Action-driven Contrastive Learning, a powerful temporal contrastive learning approach.
TACO simultaneously learns a state and an action representation by optimizing the mutual information between representations of current states.
For online RL, TACO achieves 40% performance boost after one million environment interaction steps.
arXiv Detail & Related papers (2023-06-22T22:21:53Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
Existing systems often require hand-engineered components for state estimation, planning, and control.
This paper tackles the vision-based autonomous-drone-racing problem by learning deep sensorimotor policies.
arXiv Detail & Related papers (2022-10-26T19:03:17Z) - ControlVAE: Model-Based Learning of Generative Controllers for
Physics-Based Characters [28.446959320429656]
We introduce ControlVAE, a model-based framework for learning generative motion control policies based on variational autoencoders (VAE)
Our framework can learn a rich and flexible latent representation of skills and a skill-conditioned generative control policy from a diverse set of unorganized motion sequences.
We demonstrate the effectiveness of ControlVAE using a diverse set of tasks, which allows realistic and interactive control of the simulated characters.
arXiv Detail & Related papers (2022-10-12T10:11:36Z) - Task-Induced Representation Learning [14.095897879222672]
We evaluate the effectiveness of representation learning approaches for decision making in visually complex environments.
We find that representation learning generally improves sample efficiency on unseen tasks even in visually complex scenes.
arXiv Detail & Related papers (2022-04-25T17:57:10Z) - Distilling Motion Planner Augmented Policies into Visual Control
Policies for Robot Manipulation [26.47544415550067]
We propose to distill a state-based motion planner augmented policy to a visual control policy.
We evaluate our method on three manipulation tasks in obstructed environments.
Our framework is highly sample-efficient and outperforms the state-of-the-art algorithms.
arXiv Detail & Related papers (2021-11-11T18:52:00Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill
Primitives [89.34229413345541]
We propose a conditioning scheme which avoids pitfalls by learning the controller and its conditioning in an end-to-end manner.
Our model predicts complex action sequences based directly on a dynamic image representation of the robot motion.
We report significant improvements in task success over representative MPC and IL baselines.
arXiv Detail & Related papers (2020-03-19T15:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.