MARAGS: A Multi-Adapter System for Multi-Task Retrieval Augmented Generation Question Answering
- URL: http://arxiv.org/abs/2409.03171v2
- Date: Mon, 4 Nov 2024 00:44:32 GMT
- Title: MARAGS: A Multi-Adapter System for Multi-Task Retrieval Augmented Generation Question Answering
- Authors: Mitchell DeHaven,
- Abstract summary: We present a multi-adapter retrieval augmented generation system (MARAGS) for Meta's Comprehensive RAG (CRAG) competition for KDD CUP 2024.
Our system achieved 2nd place for Task 1 as well as 3rd place on Task 2.
- Score: 0.43512163406552007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a multi-adapter retrieval augmented generation system (MARAGS) for Meta's Comprehensive RAG (CRAG) competition for KDD CUP 2024. CRAG is a question answering dataset contains 3 different subtasks aimed at realistic question and answering RAG related tasks, with a diverse set of question topics, question types, time dynamic answers, and questions featuring entities of varying popularity. Our system follows a standard setup for web based RAG, which uses processed web pages to provide context for an LLM to produce generations, while also querying API endpoints for additional information. MARAGS also utilizes multiple different adapters to solve the various requirements for these tasks with a standard cross-encoder model for ranking candidate passages relevant for answering the question. Our system achieved 2nd place for Task 1 as well as 3rd place on Task 2.
Related papers
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)
We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - Hierarchical Retrieval-Augmented Generation Model with Rethink for Multi-hop Question Answering [24.71247954169364]
Multi-hop Question Answering (QA) necessitates complex reasoning by integrating multiple pieces of information to resolve intricate questions.
Existing QA systems encounter challenges such as outdated information, context window length limitations, and an accuracy-quantity trade-off.
We propose a novel framework, the Hierarchical Retrieval-Augmented Generation Model with Rethink (HiRAG), comprising Decomposer, Definer, Retriever, Filter, and Summarizer five key modules.
arXiv Detail & Related papers (2024-08-20T09:29:31Z) - Unified Active Retrieval for Retrieval Augmented Generation [69.63003043712696]
In Retrieval-Augmented Generation (RAG), retrieval is not always helpful and applying it to every instruction is sub-optimal.
Existing active retrieval methods face two challenges: 1.
They usually rely on a single criterion, which struggles with handling various types of instructions.
They depend on specialized and highly differentiated procedures, and thus combining them makes the RAG system more complicated.
arXiv Detail & Related papers (2024-06-18T12:09:02Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs)
Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents.
This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea.
arXiv Detail & Related papers (2024-06-07T16:59:38Z) - Ask To The Point: Open-Domain Entity-Centric Question Generation [27.5948850672624]
We introduce a new task called *entity-centric question generation* (ECQG)
The task aims to generate questions from an entity perspective.
To solve ECQG, we propose a coherent PLM-based framework GenCONE with two novel modules: content focusing and question verification.
arXiv Detail & Related papers (2023-10-21T22:19:19Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context.
We propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-model, which simultaneously selects key phrases and generates full answers, and Q-model which takes the generated full answer as an additional input to generate questions.
arXiv Detail & Related papers (2023-10-20T13:57:01Z) - Visconde: Multi-document QA with GPT-3 and Neural Reranking [4.9069311006119865]
This paper proposes a question-answering system that can answer questions whose supporting evidence is spread over multiple documents.
The system, called Visconde, uses a three-step pipeline to perform the task: decompose, retrieve, and aggregate.
arXiv Detail & Related papers (2022-12-19T17:39:07Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Joint Models for Answer Verification in Question Answering Systems [85.93456768689404]
We build a three-way multi-classifier, which decides if an answer supports, refutes, or is neutral with respect to another one.
We tested our models on WikiQA, TREC-QA, and a real-world dataset.
arXiv Detail & Related papers (2021-07-09T05:34:36Z) - Query Understanding via Intent Description Generation [75.64800976586771]
We propose a novel Query-to-Intent-Description (Q2ID) task for query understanding.
Unlike existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description.
We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task.
arXiv Detail & Related papers (2020-08-25T08:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.