Hierarchical Retrieval-Augmented Generation Model with Rethink for Multi-hop Question Answering
- URL: http://arxiv.org/abs/2408.11875v1
- Date: Tue, 20 Aug 2024 09:29:31 GMT
- Title: Hierarchical Retrieval-Augmented Generation Model with Rethink for Multi-hop Question Answering
- Authors: Xiaoming Zhang, Ming Wang, Xiaocui Yang, Daling Wang, Shi Feng, Yifei Zhang,
- Abstract summary: Multi-hop Question Answering (QA) necessitates complex reasoning by integrating multiple pieces of information to resolve intricate questions.
Existing QA systems encounter challenges such as outdated information, context window length limitations, and an accuracy-quantity trade-off.
We propose a novel framework, the Hierarchical Retrieval-Augmented Generation Model with Rethink (HiRAG), comprising Decomposer, Definer, Retriever, Filter, and Summarizer five key modules.
- Score: 24.71247954169364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-hop Question Answering (QA) necessitates complex reasoning by integrating multiple pieces of information to resolve intricate questions. However, existing QA systems encounter challenges such as outdated information, context window length limitations, and an accuracy-quantity trade-off. To address these issues, we propose a novel framework, the Hierarchical Retrieval-Augmented Generation Model with Rethink (HiRAG), comprising Decomposer, Definer, Retriever, Filter, and Summarizer five key modules. We introduce a new hierarchical retrieval strategy that incorporates both sparse retrieval at the document level and dense retrieval at the chunk level, effectively integrating their strengths. Additionally, we propose a single-candidate retrieval method to mitigate the limitations of multi-candidate retrieval. We also construct two new corpora, Indexed Wikicorpus and Profile Wikicorpus, to address the issues of outdated and insufficient knowledge. Our experimental results on four datasets demonstrate that HiRAG outperforms state-of-the-art models across most metrics, and our Indexed Wikicorpus is effective. The code for HiRAG is available at https://github.com/2282588541a/HiRAG
Related papers
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)
We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
We introduce EfficientRAG, an efficient retriever for multi-hop question answering.
Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
arXiv Detail & Related papers (2024-08-08T06:57:49Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
We propose a novel iterative RAG method called ReSP, equipped with a dual-function summarizer.
Experimental results on the multi-hop question-answering HotpotQA and 2WikiMultihopQA demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2024-07-18T02:19:00Z) - Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering [45.82437926569949]
Multi-Hop Question Answering tasks present a significant challenge for large language models.
We introduce a novel generate-then-ground (GenGround) framework to solve a multi-hop question.
arXiv Detail & Related papers (2024-06-21T06:26:38Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System
for Multilingual Named Entity Recognition [94.90258603217008]
The MultiCoNER RNum2 shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios.
Previous top systems in the MultiCoNER RNum1 either incorporate the knowledge bases or gazetteers.
We propose a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER.
arXiv Detail & Related papers (2023-05-05T16:59:26Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
We propose a unified QA framework to answer any-hop open-domain questions.
Our method consistently achieves performance comparable to or better than the state-of-the-art on both single-hop and multi-hop open-domain QA datasets.
arXiv Detail & Related papers (2020-09-16T04:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.