FairQuant: Certifying and Quantifying Fairness of Deep Neural Networks
- URL: http://arxiv.org/abs/2409.03220v2
- Date: Fri, 11 Oct 2024 05:45:26 GMT
- Title: FairQuant: Certifying and Quantifying Fairness of Deep Neural Networks
- Authors: Brian Hyeongseok Kim, Jingbo Wang, Chao Wang,
- Abstract summary: We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN)
Individual fairness guarantees that any two individuals who are identical except for a legally protected attribute (e.g., gender or race) receive the same treatment.
We have implemented our method and evaluated it on four popular fairness research datasets.
- Score: 6.22084835644296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two individuals who are identical except for a legally protected attribute (e.g., gender or race) receive the same treatment. While there are existing techniques that provide such a guarantee, they tend to suffer from lack of scalability or accuracy as the size and input dimension of the DNN increase. Our method overcomes this limitation by applying abstraction to a symbolic interval based analysis of the DNN followed by iterative refinement guided by the fairness property. Furthermore, our method lifts the symbolic interval based analysis from conventional qualitative certification to quantitative certification, by computing the percentage of individuals whose classification outputs are provably fair, instead of merely deciding if the DNN is fair. We have implemented our method and evaluated it on deep neural networks trained on four popular fairness research datasets. The experimental results show that our method is not only more accurate than state-of-the-art techniques but also several orders-of-magnitude faster.
Related papers
- Towards Certified Unlearning for Deep Neural Networks [50.816473152067104]
certified unlearning has been extensively studied in convex machine learning models.
We propose several techniques to bridge the gap between certified unlearning and deep neural networks (DNNs)
arXiv Detail & Related papers (2024-08-01T21:22:10Z) - Certifying the Fairness of KNN in the Presence of Dataset Bias [8.028344363418865]
We propose a method for certifying the fairness of the classification result of a widely used supervised learning algorithm, the k-nearest neighbors (KNN)
This is the first certification method for KNN based on three variants of the fairness definition: individual fairness, $epsilon$-fairness, and label-flipping fairness.
We show effectiveness of this abstract interpretation based technique through experimental evaluation on six datasets widely used in the fairness research literature.
arXiv Detail & Related papers (2023-07-17T07:09:55Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Fairness via Representation Neutralization [60.90373932844308]
We propose a new mitigation technique, namely, Representation Neutralization for Fairness (RNF)
RNF achieves that fairness by debiasing only the task-specific classification head of DNN models.
Experimental results over several benchmark datasets demonstrate our RNF framework to effectively reduce discrimination of DNN models.
arXiv Detail & Related papers (2021-06-23T22:26:29Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Data-Driven Assessment of Deep Neural Networks with Random Input
Uncertainty [14.191310794366075]
We develop a data-driven optimization-based method capable of simultaneously certifying the safety of network outputs and localizing them.
We experimentally demonstrate the efficacy and tractability of the method on a deep ReLU network.
arXiv Detail & Related papers (2020-10-02T19:13:35Z) - Toward Reliable Models for Authenticating Multimedia Content: Detecting
Resampling Artifacts With Bayesian Neural Networks [9.857478771881741]
We make a first step toward redesigning forensic algorithms with a strong focus on reliability.
We propose to use Bayesian neural networks (BNN), which combine the power of deep neural networks with the rigorous probabilistic formulation of a Bayesian framework.
BNN yields state-of-the-art detection performance, plus excellent capabilities for detecting out-of-distribution samples.
arXiv Detail & Related papers (2020-07-28T11:23:40Z) - Scalable Quantitative Verification For Deep Neural Networks [44.570783946111334]
We propose a test-driven verification framework for deep neural networks (DNNs)
Our technique performs enough tests until soundness of a formal probabilistic property can be proven.
Our work paves the way for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees.
arXiv Detail & Related papers (2020-02-17T09:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.