論文の概要: Why mamba is effective? Exploit Linear Transformer-Mamba Network for Multi-Modality Image Fusion
- arxiv url: http://arxiv.org/abs/2409.03223v1
- Date: Thu, 5 Sep 2024 03:42:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:57:04.964133
- Title: Why mamba is effective? Exploit Linear Transformer-Mamba Network for Multi-Modality Image Fusion
- Title(参考訳): マンバはなぜ有効か?多モード画像融合のためのアウトプロイトリニアトランス-マンバネットワーク
- Authors: Chenguang Zhu, Shan Gao, Huafeng Chen, Guangqian Guo, Chaowei Wang, Yaoxing Wang, Chen Shu Lei, Quanjiang Fan,
- Abstract要約: 我々はTmambaと呼ばれる2分岐画像融合ネットワークを提案する。
線形トランスフォーマーとMambaで構成されており、線形複雑性を維持しながらグローバルなモデリング機能を備えている。
実験の結果、我々のTmambaは赤外線可視画像融合や医用画像融合など、複数の融合タスクにおいて有望な結果が得られることがわかった。
- 参考スコア(独自算出の注目度): 15.79138560700532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modality image fusion aims to integrate the merits of images from different sources and render high-quality fusion images. However, existing feature extraction and fusion methods are either constrained by inherent local reduction bias and static parameters during inference (CNN) or limited by quadratic computational complexity (Transformers), and cannot effectively extract and fuse features. To solve this problem, we propose a dual-branch image fusion network called Tmamba. It consists of linear Transformer and Mamba, which has global modeling capabilities while maintaining linear complexity. Due to the difference between the Transformer and Mamba structures, the features extracted by the two branches carry channel and position information respectively. T-M interaction structure is designed between the two branches, using global learnable parameters and convolutional layers to transfer position and channel information respectively. We further propose cross-modal interaction at the attention level to obtain cross-modal attention. Experiments show that our Tmamba achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. Code with checkpoints will be available after the peer-review process.
- Abstract(参考訳): 多モード画像融合は、異なるソースの画像の利点を統合し、高品質な融合画像をレンダリングすることを目的としている。
しかし、既存の特徴抽出と融合法は、推論(CNN)中に固有の局所還元バイアスと静的パラメータによって制約されるか、2次計算複雑性(Transformers)によって制限されるかのいずれかであり、効果的に特徴を抽出し、融合することができない。
この問題を解決するために,Tmambaと呼ばれる2分岐画像融合ネットワークを提案する。
線形トランスフォーマーとMambaで構成されており、線形複雑性を維持しながらグローバルなモデリング機能を備えている。
トランスフォーマー構造とマンバ構造の違いにより、2つの分岐によって抽出された特徴はそれぞれチャネル情報と位置情報を持っている。
T-M相互作用構造は,グローバルな学習可能なパラメータと畳み込み層を用いて,それぞれ位置とチャネル情報を伝達する。
さらに、注意レベルでの相互モーダルな相互作用を提案し、相互モーダルな注意を得る。
我々のTmambaは、赤外線可視画像融合や医用画像融合など、複数の融合タスクにおいて有望な結果が得られることを示す実験結果を得た。
チェックポイント付きのコードは、ピアレビュープロセス後に利用可能になる。
関連論文リスト
- Fusion from Decomposition: A Self-Supervised Approach for Image Fusion and Beyond [74.96466744512992]
画像融合の本質は、ソース画像からの相補的な情報を統合することである。
DeFusion++は、画像融合の品質を高め、下流の高レベル視覚タスクの有効性を高める、汎用的な融合表現を生成する。
論文 参考訳(メタデータ) (2024-10-16T06:28:49Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - FusionMamba: Dynamic Feature Enhancement for Multimodal Image Fusion with Mamba [17.75933946414591]
マルチモーダル画像融合は、異なるモードからの情報を組み合わせて、1つの画像と詳細なテクスチャを作成することを目的としている。
トランスフォーマーベースのモデルは、グローバルな特徴モデリングに優れているが、その2次複雑さに起因する計算上の課題に直面している。
マルチモーダル画像融合のための動的特徴強調手法FusionMambaを提案する。
論文 参考訳(メタデータ) (2024-04-15T06:37:21Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
異なるモダリティから情報を融合するクロスモダリティは、オブジェクト検出性能を効果的に向上させる。
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction。
提案手法は,m3FD$が5.9%,FLIRデータセットが4.9%,m3FD$が5.9%である。
論文 参考訳(メタデータ) (2024-04-14T05:28:46Z) - MambaDFuse: A Mamba-based Dual-phase Model for Multi-modality Image Fusion [4.2474907126377115]
MMIF(Multi-modality Image fusion)は、異なるモダリティからの補完情報を単一の融合画像に統合することを目的としている。
本研究では, モーダリティ特異的およびモーダリティ融合特徴を抽出するために, マンバをベースとした2相融合モデル(MambaDFuse)を提案する。
提案手法は,赤外線可視画像融合と医用画像融合において有望な融合を実現する。
論文 参考訳(メタデータ) (2024-04-12T11:33:26Z) - FusionMamba: Efficient Remote Sensing Image Fusion with State Space Model [35.57157248152558]
現在のディープラーニング(DL)手法は、典型的には、特徴抽出と情報統合のために畳み込みニューラルネットワーク(CNN)またはトランスフォーマーを使用する。
本研究では,効率的なリモートセンシング画像融合法であるFusionMambaを提案する。
論文 参考訳(メタデータ) (2024-04-11T17:29:56Z) - Equivariant Multi-Modality Image Fusion [124.11300001864579]
エンドツーエンドの自己教師型学習のための同変多モードImAge融合パラダイムを提案する。
我々のアプローチは、自然画像応答が特定の変換に等しくなるという以前の知識に根ざしている。
実験により、EMMAは赤外線可視画像と医用画像に高品質な融合結果をもたらすことが確認された。
論文 参考訳(メタデータ) (2023-05-19T05:50:24Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
本稿では,CDDFuse(Relationed-Driven Feature Decomposition Fusion)ネットワークを提案する。
近赤外可視画像融合や医用画像融合など,複数の融合タスクにおいてCDDFuseが有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-11-26T02:40:28Z) - Multimodal Image Fusion based on Hybrid CNN-Transformer and Non-local
Cross-modal Attention [12.167049432063132]
本稿では,畳み込みエンコーダとトランスフォーマーベースのデコーダを組み合わせたハイブリッドモデルを提案する。
分岐融合モジュールは、2つの枝の特徴を適応的に融合させるように設計されている。
論文 参考訳(メタデータ) (2022-10-18T13:30:52Z) - Image Fusion Transformer [75.71025138448287]
画像融合では、異なるセンサから得られた画像を融合して、情報強化された単一の画像を生成する。
近年,画像融合のための有意義な特徴を符号化するために,最先端の手法で畳み込みニューラルネットワーク(CNN)が採用されている。
我々は,画像融合変換器 (IFT) を提案する。
論文 参考訳(メタデータ) (2021-07-19T16:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。