論文の概要: Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning
- arxiv url: http://arxiv.org/abs/2409.03326v1
- Date: Thu, 5 Sep 2024 07:55:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:20:12.507039
- Title: Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning
- Title(参考訳): ユーザ中心のプライバシ保護を強化する - 拡散モデルと機械学習による対話型フレームワーク
- Authors: Huaxi Huang, Xin Yuan, Qiyu Liao, Dadong Wang, Tongliang Liu,
- Abstract要約: この研究は、データ共有とモデル公開の間、画像データのプライバシーを同時に保護する包括的なプライバシー保護フレームワークのパイオニアだ。
本稿では、生成機械学習モデルを用いて属性レベルで画像情報を修正するインタラクティブな画像プライバシー保護フレームワークを提案する。
本フレームワークでは、画像中の属性情報を保護する差分プライバシー拡散モデルと、修正された画像データセット上でトレーニングされたモデルの効率的な更新を行う特徴未学習アルゴリズムの2つのモジュールをインスタンス化する。
- 参考スコア(独自算出の注目度): 54.30994558765057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of multimedia data analysis, the extensive use of image datasets has escalated concerns over privacy protection within such data. Current research predominantly focuses on privacy protection either in data sharing or upon the release of trained machine learning models. Our study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication. We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level and employs machine unlearning algorithms for the privacy preservation of model parameters. This user-interactive framework allows for adjustments in privacy protection intensity based on user feedback on generated images, striking a balance between maximal privacy safeguarding and maintaining model performance. Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset. Our approach demonstrated superiority over existing methods on facial datasets across various attribute classifications.
- Abstract(参考訳): マルチメディアデータ分析の領域では、画像データセットの広範な使用が、そのようなデータ内のプライバシ保護に関する懸念をエスカレートしている。
現在の研究は、主にデータ共有または訓練された機械学習モデルのリリースにおけるプライバシー保護に焦点を当てている。
本研究は,データ共有とモデル公開の間,画像データのプライバシーを同時に保護する包括的プライバシー保護フレームワークのパイオニアである。
本稿では、生成機械学習モデルを用いて属性レベルで画像情報を修正するインタラクティブな画像プライバシ保護フレームワークを提案し、モデルパラメータのプライバシ保護に機械学習アルゴリズムを用いる。
ユーザインタラクションフレームワークは、生成された画像に対するユーザのフィードバックに基づいて、プライバシ保護強度の調整を可能にし、最大プライバシ保護とモデルパフォーマンスのバランスを損なう。
本フレームワークでは、画像中の属性情報を保護する差分プライバシー拡散モデルと、修正された画像データセット上でトレーニングされたモデルの効率的な更新を行う特徴未学習アルゴリズムの2つのモジュールをインスタンス化する。
提案手法は,様々な属性分類における顔データセットの既存手法よりも優れていた。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Only My Model On My Data: A Privacy Preserving Approach Protecting one
Model and Deceiving Unauthorized Black-Box Models [11.59117790048892]
本研究では、認証されたモデルによる正確な推論を維持する人間認識可能な画像を生成することにより、未調査の実用的プライバシー保護ユースケースに取り組む。
その結果、生成した画像は、保護されたモデルの精度を維持し、認証されていないブラックボックスモデルの平均精度を、ImageNet、Celeba-HQ、AffectNetのデータセットでそれぞれ11.97%、6.63%、55.51%に下げることができた。
論文 参考訳(メタデータ) (2024-02-14T17:11:52Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
医療におけるディープラーニングアプリケーションの普及は、さまざまな機関にデータ収集を求める。
プライバシー保護メカニズムは、データが自然に敏感である医療画像解析において最重要である。
本研究は,プライバシ保護技術である差分プライバシを,医用画像分類のための統合学習フレームワークに統合することの必要性に対処する。
論文 参考訳(メタデータ) (2023-06-30T16:48:58Z) - Content-based Graph Privacy Advisor [38.733077459065704]
本稿では,画像のプライバシを予測するための手がかりとして,シーン情報とオブジェクトの濃度を用いた画像プライバシー分類器を提案する。
我々のグラフプライバシ・アドバイザ(GPA)モデルは、最先端のグラフモデルを単純化し、その性能を改善する。
論文 参考訳(メタデータ) (2022-10-20T11:12:42Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - Privacy Enhancement for Cloud-Based Few-Shot Learning [4.1579007112499315]
クラウドなど,信頼できない環境における数ショット学習のプライバシ向上について検討する。
本稿では,共同損失によるプライバシー保護表現を学習する手法を提案する。
実証的な結果は、プライバシが強化された数発の学習において、プライバシとパフォーマンスのトレードオフをどのように交渉できるかを示している。
論文 参考訳(メタデータ) (2022-05-10T18:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。